As per analysis for previous years, it has been observed that students preparing for JEE MAINS find Mathematics out of all the sections to be complex to handle and the majority of them are not able to comprehend the reason behind it. This problem arises especially because these aspirants appearing for the examination are more inclined to have a keen interest in Mathematics due to their ENGINEERING background.
Furthermore, sections such as Mathematics are dominantly based on theories, laws, numerical in comparison to a section of Engineering which is more of fact-based,physics and includes substantial explanations. By using the table given below, you easily and directly access to the topics and respective links of MCQs. Moreover, to make learning smooth and efficient, all the questions come with their supportive solutions to make utilization of time even more productive. Students will be covered for all their studies as the topics are available from basics to even the most advanced. .
Q1. If x1=3 and xn+1=√(2+xn ),n≥1, then limn→∞ xn is equal to
Solution
We have, x1=3,xn+1=√(2+xn ) ∴x2=√(2+x1 )=√(2+3)=√5,x3=√(2+x2 )=√(2+√5) ∴x1>x2>x3 It can be easily shown by mathematical induction that the sequence x1,x2,…xn,… is a monotonically decreasing sequence bounded below by 2. So, it is convergent. Let lim xn =x. Then, xn+1=√(2+xn ) ⇒lim xn+1 =√(2+limxn ) ⇒x=√(2+x) ⇒x2-x-2=0 ⇒(x-2)(x+1)=0 ⇒x=2 [∵xn>0 for all n∈N ∴x>0]
We have, x1=3,xn+1=√(2+xn ) ∴x2=√(2+x1 )=√(2+3)=√5,x3=√(2+x2 )=√(2+√5) ∴x1>x2>x3 It can be easily shown by mathematical induction that the sequence x1,x2,…xn,… is a monotonically decreasing sequence bounded below by 2. So, it is convergent. Let lim xn =x. Then, xn+1=√(2+xn ) ⇒lim xn+1 =√(2+limxn ) ⇒x=√(2+x) ⇒x2-x-2=0 ⇒(x-2)(x+1)=0 ⇒x=2 [∵xn>0 for all n∈N ∴x>0]
Q2.limx→1 √(1-cos 2(x-1) )/(x-1)
Solution
RHL=limh→0 f(1+h) =limh→0 √(1-cos2h )/h =limh→0 (√2 sinh)/h=√2 LHL=limh→0 f(1-h) limh→0 √(1-cos (-2h) )/h =limh→0 √2 sinh/(-h)=-√2 Here, LHL≠RHL So, limit does not exist
RHL=limh→0 f(1+h) =limh→0 √(1-cos2h )/h =limh→0 (√2 sinh)/h=√2 LHL=limh→0 f(1-h) limh→0 √(1-cos (-2h) )/h =limh→0 √2 sinh/(-h)=-√2 Here, LHL≠RHL So, limit does not exist
Q3. limx→0 sin |x| /x is equal to
Solution
LHL=limx→0 (-sinx)/x =-1 RHL=limx→0 sinx/x =1 ⇒ LHL≠RHL ⇒ limx→0 sin |x| /x Does not exist
LHL=limx→0 (-sinx)/x =-1 RHL=limx→0 sinx/x =1 ⇒ LHL≠RHL ⇒ limx→0 sin |x| /x Does not exist
Q4. limx→Ï€/6[(3 sin x-√3 cosx )/(6x-Ï€)]
Solution
limx→Ï€/6 (3 sin x-√3 cosx )/(6x-Ï€)=limx→Ï€/6 (3 cos x+√3 cosx )/6 =(3 cos Ï€/6+√3 sin Ï€/6 )/6 =(3.√3/2+√3/2)/6 =1/√3
limx→Ï€/6 (3 sin x-√3 cosx )/(6x-Ï€)=limx→Ï€/6 (3 cos x+√3 cosx )/6 =(3 cos Ï€/6+√3 sin Ï€/6 )/6 =(3.√3/2+√3/2)/6 =1/√3
Q5.limx→∞(x3/(3x2-4)-x2/(3x+2)) is equal to
Solution
limx→∞(x3/(3x2-4)-x2/(3x+2)) =limx→∞ (x3 (3x+2)-x2 (3x2-4))/((3x2-4)(3x+2)) =limx→∞ (2x3+4x2)/(9x3+6x2-12x-8) =limx→∞ (2+4/x)/(9+6/x-12/x2-8/x3 )=2/9
limx→∞(x3/(3x2-4)-x2/(3x+2)) =limx→∞ (x3 (3x+2)-x2 (3x2-4))/((3x2-4)(3x+2)) =limx→∞ (2x3+4x2)/(9x3+6x2-12x-8) =limx→∞ (2+4/x)/(9+6/x-12/x2-8/x3 )=2/9
Q6. The value of the constant α and β such that limx→∞((x2+1)/(x+1)-αx-β)=0 are respectively
Solution
Given, limx→∞((x2+1)/(x+1)-αx-β)=0 ⇒ limx→∞((x2+1-α(x2+x)-β(x+1))/(x+1))=0 ⇒ limx→∞((2x-α(2x+1)-β(1))/1)=0 [by L’ Hospital’s rule] If this limit is zero, then the function 2x-α(2x+1)-β=0 or x(2-2α)-(α+β)=0 Equating the coefficient of x and constant terms, we get 2-2α=0 and α+β=0 ⇒ α=1, β=-1
Given, limx→∞((x2+1)/(x+1)-αx-β)=0 ⇒ limx→∞((x2+1-α(x2+x)-β(x+1))/(x+1))=0 ⇒ limx→∞((2x-α(2x+1)-β(1))/1)=0 [by L’ Hospital’s rule] If this limit is zero, then the function 2x-α(2x+1)-β=0 or x(2-2α)-(α+β)=0 Equating the coefficient of x and constant terms, we get 2-2α=0 and α+β=0 ⇒ α=1, β=-1
Q7.The value of limx→0((∫(x2)0 sec2 t dt )/(x sinx )) is
Solution
limx→0((∫(x2)0 sec2 t dt )/(x sinx ))=limx→0 (sec2 x2.2x)/(sinx+x cosx ) =limx→0 ( 2x.sec 2 x2)/x(sinx/x+cosx ) =(2×1)/(1+1)=1[∵ limx→0 sinx/x=1 ]
limx→0((∫(x2)0 sec2 t dt )/(x sinx ))=limx→0 (sec2 x2.2x)/(sinx+x cosx ) =limx→0 ( 2x.sec 2 x2)/x(sinx/x+cosx ) =(2×1)/(1+1)=1[∵ limx→0 sinx/x=1 ]
Q8. The value of limx→2 (x(5x-1))/(1-cosx ), is
Solution
We have, limx→2 (x(5x-1))/(1-cosx ) =limx→0 (((5x-1)/x))/((1-cosx)/x2 )=2log5
We have, limx→2 (x(5x-1))/(1-cosx ) =limx→0 (((5x-1)/x))/((1-cosx)/x2 )=2log5
Q9.The value of
limx→∞ {log(n-1) )n. logn(n+1).log(n+1)(n+2)…{…log(nk-1) (nk)}, is
Solution
We have, logba×logcb=logca ∴limx→∞ {log(n-1)n. logn(n+1).log(n+1) (n+2)…log(nk-1) (nk )} =limn→∞{log(n-1) nk } =limn→∞ loge nk /loge (n-1) =k limn→∞ loge n/loge (n-1) =k limn→∞ (1/n)/(1/n-1) [Using L’ Hospital’s Rule] =k limn→∞ (n-1)/n=k
We have, logba×logcb=logca ∴limx→∞ {log(n-1)n. logn(n+1).log(n+1) (n+2)…log(nk-1) (nk )} =limn→∞{log(n-1) nk } =limn→∞ loge nk /loge (n-1) =k limn→∞ loge n/loge (n-1) =k limn→∞ (1/n)/(1/n-1) [Using L’ Hospital’s Rule] =k limn→∞ (n-1)/n=k
Q10. If f(x)=cot-1[(3x-x3)/(1-3x2)] and g(x)=cos-1 [(1-x2)/(1+x2)], then limx→a (f(x)-f(a))/(g(x)-g(a)) (0<a<1/2) is
Solution
f(x)=cot-1((3x-x3)/(1-3x2 ))=Ï€/2-3tan-1x and g(x)=cos-1((1-x2)/(1+x2 ))=2tan-1x ∴ limx→a (f(x)-f(a))/(g(x)-g(a)) =limx→a ( Ï€/2-3 tan-1 x-Ï€/2+3 tan-1a )/(2 tan-1 x-2 tan-1a ) =-3/2 limx→a tan-1 x-tan-1a /tan-1x-tan-1a =-3/2
f(x)=cot-1((3x-x3)/(1-3x2 ))=Ï€/2-3tan-1x and g(x)=cos-1((1-x2)/(1+x2 ))=2tan-1x ∴ limx→a (f(x)-f(a))/(g(x)-g(a)) =limx→a ( Ï€/2-3 tan-1 x-Ï€/2+3 tan-1a )/(2 tan-1 x-2 tan-1a ) =-3/2 limx→a tan-1 x-tan-1a /tan-1x-tan-1a =-3/2