As per analysis for previous years, it has been observed that students preparing for JEE MAINS find Mathematics out of all the sections to be complex to handle and the majority of them are not able to comprehend the reason behind it. This problem arises especially because these aspirants appearing for the examination are more inclined to have a keen interest in Mathematics due to their ENGINEERING background.
Furthermore, sections such as Mathematics are dominantly based on theories, laws, numerical in comparison to a section of Engineering which is more of fact-based,physics and includes substantial explanations. By using the table given below, you easily and directly access to the topics and respective links of MCQs. Moreover, to make learning smooth and efficient, all the questions come with their supportive solutions to make utilization of time even more productive. Students will be covered for all their studies as the topics are available from basics to even the most advanced..
Q1. The value limx→a (sinx/sina )(1/(x-a)) , is
Solution
We have, limx→a (sinx/sina )1/(x-a) =limx→a {1+(sinx-sina)/sina }1/(x-a) =e(limx→a (sinx-sina)/(x-a) ×1/sina )=e(cosa/sina )=ecota
We have, limx→a (sinx/sina )1/(x-a) =limx→a {1+(sinx-sina)/sina }1/(x-a) =e(limx→a (sinx-sina)/(x-a) ×1/sina )=e(cosa/sina )=ecota
Q2.If f(x)={ (x sin 1/x x≠0 0 x=0), then limx→0 f(x) is equal to
Solution
limx→0 f(x) =limx→0 x.sin 1/x =0×finite term=0
limx→0 f(x) =limx→0 x.sin 1/x =0×finite term=0
Q3. The value of limx→2- {x+(x-[x]2}, is
Solution
We have, limx→2- {x+(x-[x]2} =limx→2- x+limx+2- ) (x-[x])2
We have, limx→2- {x+(x-[x]2} =limx→2- x+limx+2- ) (x-[x])2
Q4. If limx→0((ekx-1) sinkx)/x2 =4, then k is equal to
Solution
limx→0 ((ekx-1) sinkx)/x2 =4 ⇒ limx→0 (ekx-1)/kx×k×sinkx/kx×k=4 ⇒ k2=4 ⇒ k=±2
limx→0 ((ekx-1) sinkx)/x2 =4 ⇒ limx→0 (ekx-1)/kx×k×sinkx/kx×k=4 ⇒ k2=4 ⇒ k=±2
Q5.If f' (2)=2,f'' (2)=1, then limx→2(2x2-4f' (x))/(x-2), is
Solution
We have, limx→2 (2x2-4f' (x))/(x-2)〗=limx→0 (4x-4f'' (x))/1 [Using L’ Hospital’s Rule] ⇒limx→2 (2x2-4f'(x))/(x-2)=8-4f'' (2)=8-4=4
We have, limx→2 (2x2-4f' (x))/(x-2)〗=limx→0 (4x-4f'' (x))/1 [Using L’ Hospital’s Rule] ⇒limx→2 (2x2-4f'(x))/(x-2)=8-4f'' (2)=8-4=4
Q6. limh→0 ((a+h)2 sin (a+h)-a2 sina )/h is equal to
Solution
Here, limh→0 ((a+h)2 sin (a+h)-a2 sina )/h =limh→0[(a2 {sin (a+h)-sina })/h+(h{2a sin (a+h)+h sin (a+h)} )/h] =limh→0 (a2.2 cos [a+h/2].sin h/2 )/(2.h/2)+limh→0(2a+h) sin(a+h) =a2 cos a+2a sina
Here, limh→0 ((a+h)2 sin (a+h)-a2 sina )/h =limh→0[(a2 {sin (a+h)-sina })/h+(h{2a sin (a+h)+h sin (a+h)} )/h] =limh→0 (a2.2 cos [a+h/2].sin h/2 )/(2.h/2)+limh→0(2a+h) sin(a+h) =a2 cos a+2a sina
Q7.If limx→0 log(x+a)-loga /x+k limx→elog x-1 /(x-e) =1, then the value of k is
Solution
limx→0 log (x+a)-loga /x+k limx→e log x-1/(x-e)=1 Using L’ Hospital’s rule limx→0 (1/(x+a))/1+k limx→0 (1/x)/1=1 ⇒ 1/a+k/e=1 ⇒ k=e(1-1/a)
limx→0 log (x+a)-loga /x+k limx→e log x-1/(x-e)=1 Using L’ Hospital’s rule limx→0 (1/(x+a))/1+k limx→0 (1/x)/1=1 ⇒ 1/a+k/e=1 ⇒ k=e(1-1/a)
Q8.limx→Ï€/2 (acotx -acosx )/cot x-cosx , a>0 is equal to
Solution
limx→Ï€/2 (acotx -acosx )/cotx-cosx =limx→Ï€/2 [ (1+cot x loge a+cot2x/2! (logea )2+⋯ -1-cos x loge a-cos2x/2! (logea )2-... )]/cot x-cosx =limx→Ï€/2 {loge a+cot x+cosx /2! (logea )2+... } =logea
limx→Ï€/2 (acotx -acosx )/cotx-cosx =limx→Ï€/2 [ (1+cot x loge a+cot2x/2! (logea )2+⋯ -1-cos x loge a-cos2x/2! (logea )2-... )]/cot x-cosx =limx→Ï€/2 {loge a+cot x+cosx /2! (logea )2+... } =logea
Q9.If a,b,c,d are positive, then limx→∞(1+1/(a+bx))(c+dx)=
Solution
We have, limx→∞(1+1/(a+bx))(c+dx)=elimx→∞ (c+dx)/(a+bx) =e(d/b)
We have, limx→∞(1+1/(a+bx))(c+dx)=elimx→∞ (c+dx)/(a+bx) =e(d/b)
Q10. If f(x)={ (x,x<0 1,x=0 x2,x>0), then limx→0 f(x) is
Solution
We have, limx→0- f(x)=limx→0 x=0 and,limx→0+ f(x)=limx→0 x2 =0 Hence limx→0 f(x)=0
We have, limx→0- f(x)=limx→0 x=0 and,limx→0+ f(x)=limx→0 x2 =0 Hence limx→0 f(x)=0