Complex numbers and quadratic equations is a segment of maths that deals with crucial theorems and concepts along with various formulae. It comprises of linear and quadratic equations along with roots related to the complex number's set (known as complex roots)..
Q1. If | z - 2 - i | = |z||sin(Ï€/4 - argz ) |, then locus of z is
Solution
(c) br We have,
|(x-2) + i(y-1)| = |z| | 1/√2 cosθ - 1/√2 sinθ |
Where θ = argz
√( ( x - 2 )^2 + ( y - 1 )^2 ) = 1/√2 |x - y|
Which is a parabola
(c) br We have,
|(x-2) + i(y-1)| = |z| | 1/√2 cosθ - 1/√2 sinθ |
Where θ = argz
√( ( x - 2 )^2 + ( y - 1 )^2 ) = 1/√2 |x - y|
Which is a parabola
Q2.If z = i log[( 2 - √(-3 ) ) ] then cosz =
Solution
(d)
z = ilog[(2 - √3)]
⇒ e^iz = e^(i^2 log[( 2 - √3 )] ) = e^( -log [(2 - √3)] )
⇒ e^iz = e^log[( 2 - √3 )^(-1) ] = e^log[ (2 - √3) ] = (2 + √3)
⇒ cosz = (e^iz + e^(-iz) )/2 = ( (2 + √3) +( 2 - √3 ) )/2 = 2
(d)
z = ilog[(2 - √3)]
⇒ e^iz = e^(i^2 log[( 2 - √3 )] ) = e^( -log [(2 - √3)] )
⇒ e^iz = e^log[( 2 - √3 )^(-1) ] = e^log[ (2 - √3) ] = (2 + √3)
⇒ cosz = (e^iz + e^(-iz) )/2 = ( (2 + √3) +( 2 - √3 ) )/2 = 2
Q3. If x , y ∈ R satisfy theEquation x^2 + y^2 - 4x - 2y + 5 = 0, then the value of the expression [ ( √x - √y )^2 + 4√xy ) ]/( x + √xy ) is
Solution
(d)
f(x , y) = ( x - 2 )^2 + (y - 1 )^2 = 0
⇒ x = 2 and y = 1
∴ E =( (√2 - 1 )^2 + 4√2 )/( 2 + √2 ) = ( √2 + 1 )^2 /( √2( √2 + 1) ) = ( √2 + 1 )/√2
(d)
f(x , y) = ( x - 2 )^2 + (y - 1 )^2 = 0
⇒ x = 2 and y = 1
∴ E =( (√2 - 1 )^2 + 4√2 )/( 2 + √2 ) = ( √2 + 1 )^2 /( √2( √2 + 1) ) = ( √2 + 1 )/√2
Q4. The least value of the expression x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14 is
Solution
(a)
Let, f(x , y , z) = x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14
= ( x - 1 )^2 + ( 2y - 3 )^2 + 3(z - 1)^2 + 1
For the least value of f(x,y,z),
x - 1 = 0 , 2y - 3 = 0 and z - 1 = 0
∴ x = 1 , y = 3/2 , z = 1
Hence the least value of f(x,y,z) is f(1 , 3/2 , 1 ) = 1
(a)
Let, f(x , y , z) = x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14
= ( x - 1 )^2 + ( 2y - 3 )^2 + 3(z - 1)^2 + 1
For the least value of f(x,y,z),
x - 1 = 0 , 2y - 3 = 0 and z - 1 = 0
∴ x = 1 , y = 3/2 , z = 1
Hence the least value of f(x,y,z) is f(1 , 3/2 , 1 ) = 1
Q5.
If A(z_1 ) , B(z_2 ) , C(z_3) are the vertices of the triangle ABC such that (z_1 - z_2 )/( z_3 - z_2 ) = ( 1/√2 ) + (i/√2), the triangle ABC is
Q6. 76. If the roots of the equation, x^2 + 2ax + b = 0, are real and distinct and they differ by at most 2m, then b lies in the interval
Solution
(c)
Let the roots be α , β
∴ α + β = -2a and αβ = b
Given,
|α - β| ≤ 2m
⇒ |α - β|^2 ≤ (2m)^2
⇒ (α + β )^2 - 4ab ≤ 4m^2
⇒ 4a^2 - 4b ≤ 4m^2
⇒ a^2 - m^2 ≤ b and discriminant D > 0 or 4a^2 - 4b > 0
⇒ a^2 - m^2 ≤ b and b < a^2
Hence, b ∈ [a^2 - m^2 , a^2]
(c)
Let the roots be α , β
∴ α + β = -2a and αβ = b
Given,
|α - β| ≤ 2m
⇒ |α - β|^2 ≤ (2m)^2
⇒ (α + β )^2 - 4ab ≤ 4m^2
⇒ 4a^2 - 4b ≤ 4m^2
⇒ a^2 - m^2 ≤ b and discriminant D > 0 or 4a^2 - 4b > 0
⇒ a^2 - m^2 ≤ b and b < a^2
Hence, b ∈ [a^2 - m^2 , a^2]
Q7.
If x is real, then the maximum value of ( 3x^2 + 9x + 17 )/( 3x^2 + 9x + 7 ) is
Solution
(b)
Let,
y = ( 3x^2 + 9x + 17 )/( 3x^2 + 9x + 7 )
⇒ 3x^2 (y - 1) + 9x(y - 1) + 7y - 17 = 0
Since x is real, so,
D ≥ 0
⇒ 81(y - 1)^2 - 4×3(y - 1)(7y - 17) ≥ 0
⇒ (y - 1)(y - 41) ≤ 0 ⇒ 1 ≤ y ≤ 41
Therefore, the maximum value of y is 41
(b)
Let,
y = ( 3x^2 + 9x + 17 )/( 3x^2 + 9x + 7 )
⇒ 3x^2 (y - 1) + 9x(y - 1) + 7y - 17 = 0
Since x is real, so,
D ≥ 0
⇒ 81(y - 1)^2 - 4×3(y - 1)(7y - 17) ≥ 0
⇒ (y - 1)(y - 41) ≤ 0 ⇒ 1 ≤ y ≤ 41
Therefore, the maximum value of y is 41
Q8.
If a < 0 , b > 0 then √a √b is equal to
Solution
(b)
Verify by selecting particular values of a and b
Let a = -9 and b = 4. Then,
√a √b = √( -9 ) √4 =( 3i )( 2 ) = 6i
From option (a), we have
-√( |a|b ) = -√(|-9|×4) = -√36 = -6
From option (b), we have
√( |a|bi ) = √( |-9|×4 ) i = 6i
(b)
Verify by selecting particular values of a and b
Let a = -9 and b = 4. Then,
√a √b = √( -9 ) √4 =( 3i )( 2 ) = 6i
From option (a), we have
-√( |a|b ) = -√(|-9|×4) = -√36 = -6
From option (b), we have
√( |a|bi ) = √( |-9|×4 ) i = 6i
Q9.
The inequality |z - 4| < |z - 2| represents the region given by
Solution
(d)
|z - 4| < |z - 2|
⇒ |(x - 4) + iy| < |(x - 2) + iy|
⇒ ( x - 4 )^2 + y^2 < ( x - 2 )^2 + y^2
⇒ -8x+16< -4x+4
⇒ 4x - 12 > 0
⇒ x > 3
⇒ Re(z) > 3
(d)
|z - 4| < |z - 2|
⇒ |(x - 4) + iy| < |(x - 2) + iy|
⇒ ( x - 4 )^2 + y^2 < ( x - 2 )^2 + y^2
⇒ -8x+16< -4x+4
⇒ 4x - 12 > 0
⇒ x > 3
⇒ Re(z) > 3