Important topics for Maths has been designed in such a way that it offers very practical and application-based learning to further make it easier for students to understand every concept or topic by correlating it with the day-to-day experiences.
Q1. If x=logp and y=1/p, then
- (d^2 y)/(dx^2 )-2p=0
- (d^2 y)/(dx^2 )+y=0
- (d^2 y)/(dx^2 )+dy/dx=0
- (d^2 y)/(dx^2 )-dy/dx=0
Q3. If y=sinx+e^x, then (d^2 y)/(dy^2 )=
- (-sinx+e^x)^(-1)
- sinx-e^x /(cosx+e^x)^2
- sinx-e^x / (cosx+e^x)^3
- sinx+e^x/(cosx+e^x)^3
Q4. If sin^(-1)((x^2-y^2)/(x^2+y^2 ))=loga, then dy/dx is equal to
- x/y
- y/x^2
- (x^2-y^2)/(x^2+y^2 )
- y/x
Solution
(d) We have sin^(-1)((x^2-y^2)/(x^2+y^2 ))=loga ⇒(x^2-y^2)/(x^2+y^2 )=sin(loga) ⇒(1-tan^2θ)/(1+tan^2θ )=sin(loga), on putting y=x tanθ ⇒cos2θ=sin(loga) ⇒2θ=cos^(-1)(sin(loga)) θ=1/2 cos^(-1)(sin(loga)) ⇒tan^(-1)(y/x)=1/2 cos^(-1)(sin(loga)) ⇒y/x=tan(1/2 cos^(-1)(sin(loga))) Differentiating w.r.t. x ⇒ (x dy/dx-y)/x^2 =0 ⇒x dy/dx-y=0 ⇒dy/dx=y/x
(d) We have sin^(-1)((x^2-y^2)/(x^2+y^2 ))=loga ⇒(x^2-y^2)/(x^2+y^2 )=sin(loga) ⇒(1-tan^2θ)/(1+tan^2θ )=sin(loga), on putting y=x tanθ ⇒cos2θ=sin(loga) ⇒2θ=cos^(-1)(sin(loga)) θ=1/2 cos^(-1)(sin(loga)) ⇒tan^(-1)(y/x)=1/2 cos^(-1)(sin(loga)) ⇒y/x=tan(1/2 cos^(-1)(sin(loga))) Differentiating w.r.t. x ⇒ (x dy/dx-y)/x^2 =0 ⇒x dy/dx-y=0 ⇒dy/dx=y/x
- (x+(a+b))/√((a-x)(x-b))
- (2x-a-b)/(2√(a-x) √(x-b))
- -((a+b))/(2√((a-x)(x-b)))
- (2x+(a+b))/(2√((a-x)(x-b)))
Q6. If f(x)=|sinx- |cosx | |, then the value f'(x) at x=7π/6 is
- Positive
- (1-√3)/2
- 0
- None of these
Solution
(a) In the neighbourhood of x=7π/6, we have f(x)=|sinx+cosx |=-sinx-cosx ⇒f^' (x)=-cosx+sinx⇒f'(7π/6)= -cos(7π/6) +sin(7π/6)=(√3-1)/2
(a) In the neighbourhood of x=7π/6, we have f(x)=|sinx+cosx |=-sinx-cosx ⇒f^' (x)=-cosx+sinx⇒f'(7π/6)= -cos(7π/6) +sin(7π/6)=(√3-1)/2
Q7.If f(0)=0,f^' (0)=2, then the derivative of
y=f(f(f(f(x))) at x=0 is
- 2
- 8
- 16
- 4
Solution
(c) y^' (x)=f^' (f(f(f(x)))) f^' (f(f(x))) f^' (f(x))f'(x) ⇒y^' (0)=f'(f(f(f(0)))) f'(f(f(0)))f'(f(0))f'(0) =f^' (f(f(0))) f^' (f(0)) f^' (0)f'(0) =f^' (f(0)) f^' (0) f^' (0)f'(0) =f^' (0) f^' (0) f^' (0)f'(0) =(f^' (0))^4=2^4=16
(c) y^' (x)=f^' (f(f(f(x)))) f^' (f(f(x))) f^' (f(x))f'(x) ⇒y^' (0)=f'(f(f(f(0)))) f'(f(f(0)))f'(f(0))f'(0) =f^' (f(f(0))) f^' (f(0)) f^' (0)f'(0) =f^' (f(0)) f^' (0) f^' (0)f'(0) =f^' (0) f^' (0) f^' (0)f'(0) =(f^' (0))^4=2^4=16
Q8.If y=(sinx )^tanx , then dy/dx=
- (sinx )^tanx (1+sec^2x log sinx )
- tanx (sinx )^tanx-1 .cosx
- (sinx )^tanx sec^2x logsinx
- tanx(sinx )^tanx-1
Solution
(a) y=(sinx )^tanx ⇒logy=tanx logsinx Differentiating w.r.t. x, we get 1/y dy/dx=sec^2x logsinx+tanx 1/sinx .cosx ⇒dy/dx=(sinx )^tanx [1+sec^2x logsinx ]
(a) y=(sinx )^tanx ⇒logy=tanx logsinx Differentiating w.r.t. x, we get 1/y dy/dx=sec^2x logsinx+tanx 1/sinx .cosx ⇒dy/dx=(sinx )^tanx [1+sec^2x logsinx ]
Q9. If f(x)=sin^(-1)cosx, then the value of f(10)+f'(10) is
- 11-7π/2
- 7π/2-11
- 5π/2-11
- None of these
Q10. The nth derivative of xe^x vanishes when
- x=0
- x=-1
- x=-n
- x=n
Solution
(c) f(x)=xe^x f'(x)=e^x+xe^x f''(x)=e^x+e^x+xe^x f'''(x)=2e^x+e^x+xe^x=3e^x+xe^x … … f^n (x)=ne^x+xe^x Now, f^n (x)=0 ⇒ne^x+xe^x=0⇒x=-n
(c) f(x)=xe^x f'(x)=e^x+xe^x f''(x)=e^x+e^x+xe^x f'''(x)=2e^x+e^x+xe^x=3e^x+xe^x … … f^n (x)=ne^x+xe^x Now, f^n (x)=0 ⇒ne^x+xe^x=0⇒x=-n
Want to know more
Please fill in the details below:
INNER POST ADS
Written by: AUTHORNAME
AUTHORDESCRIPTION