Important topics for Maths has been designed in such a way that it offers very practical and application-based learning to further make it easier for students to understand every concept or topic by correlating it with the day-to-day experiences.
Q2.Let g(x) be the inverse of an invertible function f(x) which is differentiable for all real x, then g"(f(x)) equals
Q4. If f(x)=|x^2-5x+6|, then f'(x) equals
Solution
(b) f(x)=|x^2-5x+6|={x^2-5x+6 if x≥3 or x≤2 -(x^2-5x+6), if 23 or x<2 -(2x-5) if 2
(b) f(x)=|x^2-5x+6|={x^2-5x+6 if x≥3 or x≤2 -(x^2-5x+6), if 2
Q6. If y=x-x^2, then the derivative of y^2 with respect to x^2 is
Solution
(d) Let u=y^2 and v=x^2 ∴du/dx=d/dx y^2=(d/dy y^2 )(dy/dx) =2y(1-2x)=2(x-x^2 )(1-2x)=2x(1-x)(1-2x) (1) and dv/dx=2x ...(2) Hence, du/dv=((du/dx))/((dv/dx) )=2x(1-x)(1-2x)/2x (from(1) and (2)) =(1-x)(1-2x)=1-3x+2x^2
(d) Let u=y^2 and v=x^2 ∴du/dx=d/dx y^2=(d/dy y^2 )(dy/dx) =2y(1-2x)=2(x-x^2 )(1-2x)=2x(1-x)(1-2x) (1) and dv/dx=2x ...(2) Hence, du/dv=((du/dx))/((dv/dx) )=2x(1-x)(1-2x)/2x (from(1) and (2)) =(1-x)(1-2x)=1-3x+2x^2
Solution
47 (b) √x=cosθ x∈(0,1/2)⇒√x=cosθ ∈(0,1/√2) ⇒θ∈(Ï€/4,Ï€/2) ⇒2θ∈(Ï€/2,Ï€) ⇒f(x)=2 sin^(-1) √(1-cos^2θ )+sin^(-1) (2√(cos^2θ sin^2θ)) =2 sin^(-1)(sinθ)+sin^(-1)(2 sinθ cosθ) =2θ+sin^(-1)(sin2θ) =2θ+Ï€-2θ =Ï€ ⇒f'(x)=0
47 (b) √x=cosθ x∈(0,1/2)⇒√x=cosθ ∈(0,1/√2) ⇒θ∈(Ï€/4,Ï€/2) ⇒2θ∈(Ï€/2,Ï€) ⇒f(x)=2 sin^(-1) √(1-cos^2θ )+sin^(-1) (2√(cos^2θ sin^2θ)) =2 sin^(-1)(sinθ)+sin^(-1)(2 sinθ cosθ) =2θ+sin^(-1)(sin2θ) =2θ+Ï€-2θ =Ï€ ⇒f'(x)=0
Q8. If f(x) satisfies the relation f((5x-3y)/2)=5f(x)-3f(y)/2 ∀x,yϵ R, and f(0)=3
and f^' (0)=2, then the period of sin(f(x)) is
Solution
(b) Given f((5x-3y)/2)=(5f(x)-3f(y))/2 ⇒f((5x-3y)/(5-3))=(5f(x)-3f(y))/(5-3), which satisfies section formula for abscissa on L.H.S. and ordinate on R.H.S. Hence,f(x) must be the linear function (as only straight line satisfies such section formula) But f(0)=3⇒b=3,f' (0)=2⇒a=2 Thus, f(x)=2x+3⇒ Period of sin(f(x))=sin(2x+3) is Ï€
(b) Given f((5x-3y)/2)=(5f(x)-3f(y))/2 ⇒f((5x-3y)/(5-3))=(5f(x)-3f(y))/(5-3), which satisfies section formula for abscissa on L.H.S. and ordinate on R.H.S. Hence,f(x) must be the linear function (as only straight line satisfies such section formula) But f(0)=3⇒b=3,f' (0)=2⇒a=2 Thus, f(x)=2x+3⇒ Period of sin(f(x))=sin(2x+3) is Ï€
Q9.The function f(x)=e^x+x, being differentiable and one to one, has a differentiable inverse f^(-1) (x). The value of d/dx(f^(-1)) at the point f(log2) is