Important topics for Maths has been designed in such a way that it offers very practical and application-based learning to further make it easier for students to understand every concept or topic by correlating it with the day-to-day experiences.
Q1. If I=|sinx| [sinx]dx (where [.] denotes the greatest integer function), then the value of I is
Solution
∫(-20Ï€)^20Ï€|sinx |[sinx ]dx =∫0^20Ï€|sinx |([sinx]+[–sinx]) dx =-20∫_0^Ï€(sinx )dx=-20 (–cosx )0^Ï€=20 (-2)=-40
∫(-20Ï€)^20Ï€|sinx |[sinx ]dx =∫0^20Ï€|sinx |([sinx]+[–sinx]) dx =-20∫_0^Ï€(sinx )dx=-20 (–cosx )0^Ï€=20 (-2)=-40
Q2.If I=∫(√(cotx )-√(tanx ))dx,then I equals
Solution
I=∫cosx-sinx/√(cosx sinx) dx Put sinx+cosx=t,so that 2 sinx cosx= t^2 -1 ∴ I= √(2 ) ∫dt/√(t^(2 )- 1) = √(2 ) log|t +√(t^(2 )- 1)|+c =√2 log|sinx+cosx+√(sin2x ) |+C
I=∫cosx-sinx/√(cosx sinx) dx Put sinx+cosx=t,so that 2 sinx cosx= t^2 -1 ∴ I= √(2 ) ∫dt/√(t^(2 )- 1) = √(2 ) log|t +√(t^(2 )- 1)|+c =√2 log|sinx+cosx+√(sin2x ) |+C
Q4. Let f(x)=x/(1+x^n )^(1⁄n) for n≥2 and g(x)=(fofo…of)(x).Then, ∫x^(n-2)g(x)dxequals
Solution
Here, ff(x)=(f(x))/[1+f(x)^n ]^(1⁄n) =x/(1+2x^n )^(1⁄n) and fff(x)=x/(1+3x^n )^(1⁄n) nbsp; ∴ =x/(1+nx^n )^(1⁄n) Let I=∫x^(n-2) g(x)dx=∫(x^(n-1) dx)/(1+nx^n )^(1⁄n) =1/n^2 ∫(n^2 x^(n-1) dx)/(1+nx^n )^(1⁄n) =1/n^2 ∫(d/dx(1+nx^n))/(1+nx^n )^(1⁄n) dx ∴ I=1/n(n-1) (1+nx^n )^(1-1/n)+c
Here, ff(x)=(f(x))/[1+f(x)^n ]^(1⁄n) =x/(1+2x^n )^(1⁄n) and fff(x)=x/(1+3x^n )^(1⁄n) nbsp; ∴ =x/(1+nx^n )^(1⁄n) Let I=∫x^(n-2) g(x)dx=∫(x^(n-1) dx)/(1+nx^n )^(1⁄n) =1/n^2 ∫(n^2 x^(n-1) dx)/(1+nx^n )^(1⁄n) =1/n^2 ∫(d/dx(1+nx^n))/(1+nx^n )^(1⁄n) dx ∴ I=1/n(n-1) (1+nx^n )^(1-1/n)+c
Solution
Given λ=∫0^1e^t/(1+t) dt ∫0^1e^t log_e(1+t)dt=[log_e(1+t) e^t ]0^1-∫0^1e^t/(1+t)=e loge 2-λ
Given λ=∫0^1e^t/(1+t) dt ∫0^1e^t log_e(1+t)dt=[log_e(1+t) e^t ]0^1-∫0^1e^t/(1+t)=e loge 2-λ
Q6. ∫1/√(sin^3 x sin(x+α))dx,α≠nÏ€,n∈Z is equal to
Solution
sin^3 x sin(x+α) =sin^3 x(sinx cosα+cosx sinα) =sin^4 x(cosα+cotx sinα ) I=∫1/√(sin^3 x sin(x+α) ) dx =∫1/(sin^2 x √(cosα+cotx sinα )) dx =∫(cosec^2 x)/√(cosα+cotx sinα ) dx Putting cosα+cotx sinα=t and-cosec^2 x sinαdx=dt, we have I=∫-1/sinα√t dt=-1/sinα ∫t^(-1/2) dt =1/sinα (t^(1/2)/(1/2))+C ⇒I=-2 cosec α √(t )+C =-2 cosec α(cosα+cotx sinα )^(1/2)+C
sin^3 x sin(x+α) =sin^3 x(sinx cosα+cosx sinα) =sin^4 x(cosα+cotx sinα ) I=∫1/√(sin^3 x sin(x+α) ) dx =∫1/(sin^2 x √(cosα+cotx sinα )) dx =∫(cosec^2 x)/√(cosα+cotx sinα ) dx Putting cosα+cotx sinα=t and-cosec^2 x sinαdx=dt, we have I=∫-1/sinα√t dt=-1/sinα ∫t^(-1/2) dt =1/sinα (t^(1/2)/(1/2))+C ⇒I=-2 cosec α √(t )+C =-2 cosec α(cosα+cotx sinα )^(1/2)+C
Q7.∫sin2x/sin5x sin3x dx is equal to
Solution
∫sin2x/sin5x sin3x dx =∫sin(5x-3x)/sin5x sin3x =∫sin5x cos3x-cos5x sin3x/sin5x sin3x dx =1/3 logsin3x-1/5 logsin5x+ C
∫sin2x/sin5x sin3x dx =∫sin(5x-3x)/sin5x sin3x =∫sin5x cos3x-cos5x sin3x/sin5x sin3x dx =1/3 logsin3x-1/5 logsin5x+ C
Q8.∫sin2x/(sin^4x+cos^4x ) dx is equal to
Solution
I=∫sin2x/sin^4x+cos^4x dx =∫(2 sinx cosx )/sin^4x+cos^4x dx =∫(2 tanx sec^2x )/(1+tan^4 x) dx Let tan^2 x=t⇒2tanx sec^2x dx=dt ⇒I=∫dt/(1+t^2 )=tan^(-1)+C=tan^(-1)(tan^2x ) +C
I=∫sin2x/sin^4x+cos^4x dx =∫(2 sinx cosx )/sin^4x+cos^4x dx =∫(2 tanx sec^2x )/(1+tan^4 x) dx Let tan^2 x=t⇒2tanx sec^2x dx=dt ⇒I=∫dt/(1+t^2 )=tan^(-1)+C=tan^(-1)(tan^2x ) +C
Q9.∫(3+2 cosx)/(2+3 cosx )^(2 ) dx is equal to
Solution
Let I=∫(3+2 cosx)/(2+3 cosx)^2 dx, Multiplying N^rand D^(r )by cosec^2 x, we get ⇒I=∫((3 cosec^2 x+2 cotx cosec x))/(2 cosec x+cotx)^2 dx =-∫(-3cosec^2 x-2 cotx cosec x )/(2 cosec x+3 cotx)^2 dx =1/(2 cosec x+3 cotx )+C=(sinx/(2+3 cosx ))+C
Let I=∫(3+2 cosx)/(2+3 cosx)^2 dx, Multiplying N^rand D^(r )by cosec^2 x, we get ⇒I=∫((3 cosec^2 x+2 cotx cosec x))/(2 cosec x+cotx)^2 dx =-∫(-3cosec^2 x-2 cotx cosec x )/(2 cosec x+3 cotx)^2 dx =1/(2 cosec x+3 cotx )+C=(sinx/(2+3 cosx ))+C
Solution
Given, ∫0^x√(1-(f^' (t) )^2 ) dt=∫0^xf(t)dt,0≤x≤1 Applying Leibnitz theorem, we get √(1-(f^' (x) )^2 )=f(x) ⇒1-(f^' (x) )^2=f^2 (x) ⇒ (f^' (x) )^2=1-f^2 (x) ⇒f^' (x)=±√(1-f^2 (x)) ⇒ dy/dx=±√(1-y^2 ),where y=f(x) ⇒ dy/√(1-y^2 )=±dx On integrating both sides, we get sin^(-1)(y)=±x+C ∵f(0)=0⇒C=0 ∴y=±sinx y=sinx=f(x)given f(x)≥0 for x∈[0,1] It is known that sinx less than x,∀ x∈R^+ ∴sin(1/2)<1/2⇒f(1/2)<1/2 and sin(1/3)<1/3 ⇒ f(1/3)<1/3
Given, ∫0^x√(1-(f^' (t) )^2 ) dt=∫0^xf(t)dt,0≤x≤1 Applying Leibnitz theorem, we get √(1-(f^' (x) )^2 )=f(x) ⇒1-(f^' (x) )^2=f^2 (x) ⇒ (f^' (x) )^2=1-f^2 (x) ⇒f^' (x)=±√(1-f^2 (x)) ⇒ dy/dx=±√(1-y^2 ),where y=f(x) ⇒ dy/√(1-y^2 )=±dx On integrating both sides, we get sin^(-1)(y)=±x+C ∵f(0)=0⇒C=0 ∴y=±sinx y=sinx=f(x)given f(x)≥0 for x∈[0,1] It is known that sinx less than x,∀ x∈R^+ ∴sin(1/2)<1/2⇒f(1/2)<1/2 and sin(1/3)<1/3 ⇒ f(1/3)<1/3