In mathematics, a function can be defined as a rule that
relates every element in one set, called the domain, to exactly one element in another set, called the range. For
example, y = x + 3 and y = x2 – 1 are functions because every x-value produces a different y-value. A relation is
any set of ordered-pair numbers..
Q1. The domain of the function f(x)=√(x^2-〖[x]〗^2 ), where [x]=
the greatest integer less than or equal to x, is
Solution
(d) x^2-〖[x]〗^2≥0⇒x^2≥〖[x]〗^2 This is true for all positive values of x and all negative integer x
(d) x^2-〖[x]〗^2≥0⇒x^2≥〖[x]〗^2 This is true for all positive values of x and all negative integer x
Q2.If the period of cos(sin(nx)
)/tan(x⁄n) ,n∈N, is 6Ï€, then n is equal to
Solution
(c) The period of cos(sinnx ) is π/n and the period of tan(x/n) is π n Thus, 6π=LCM(π/n,πn) By checking for the different values of n,n=6
(c) The period of cos(sinnx ) is π/n and the period of tan(x/n) is π n Thus, 6π=LCM(π/n,πn) By checking for the different values of n,n=6
Q3. Let R be the set o real numbers. If R→R is a function defined
by f(x)=x^2, then f is
Solution
(d) f(x)=x^2 is many-one as f(1)=f(-1)=1. Also f is into, as the range of function is [0,∞) which is subset of R (co-domin). ∴f is neither injective nor surjective.
(d) f(x)=x^2 is many-one as f(1)=f(-1)=1. Also f is into, as the range of function is [0,∞) which is subset of R (co-domin). ∴f is neither injective nor surjective.
Q4. The range of f(x)=[sinx+[cosx+[tanx+[secx ]]]],x∈(0,Ï€⁄4), where [.] denotes the greatest integer function ≤x, is
Solution
(c) Given f(x)=[sinx+[cosx+[tanx+[secx ]]]] =[sin〖+p〗 ],where p=[cosx+[tanx+[secx ]]] =[sinx ]+p, (as p is integer) =[sinx ]+[cosx+[tanx+[secx ]]] =[sinx ]+[cosx ]+[tanx ]+[secx ] Now, for x∈(0,Ï€⁄4),sinx∈(0,1/√2),cosx∈(1/√2,1),tanx∈(0,1),secx∈(1,√2) ⇒[sinx ]=0,[cosx ]=0,[tanx ]=0 and [secx ]=1 ⇒ The range of f(x) is 1
(c) Given f(x)=[sinx+[cosx+[tanx+[secx ]]]] =[sin〖+p〗 ],where p=[cosx+[tanx+[secx ]]] =[sinx ]+p, (as p is integer) =[sinx ]+[cosx+[tanx+[secx ]]] =[sinx ]+[cosx ]+[tanx ]+[secx ] Now, for x∈(0,Ï€⁄4),sinx∈(0,1/√2),cosx∈(1/√2,1),tanx∈(0,1),secx∈(1,√2) ⇒[sinx ]=0,[cosx ]=0,[tanx ]=0 and [secx ]=1 ⇒ The range of f(x) is 1
Q5.
Let f:R→[0,Ï€/2) defined by f(x)=tan^(-1)〖(x^2+x+a)〗, then the set of values of a for which f is onto is
Solution
(c) Since co-domain =[0,Ï€/2) ∴ for f to be onto, the range =[0,Ï€/2) This is possible only when x^2+x+a≥0∀x∈R ∴1^2-4a≤0⇒a≥1/4
(c) Since co-domain =[0,Ï€/2) ∴ for f to be onto, the range =[0,Ï€/2) This is possible only when x^2+x+a≥0∀x∈R ∴1^2-4a≤0⇒a≥1/4
Q6. The domain of the function f(x)=1/√(4x-|x^2-10x+9| )
is
Solution
(d) f(x)=1/√(4x-|x^2-10x+9| ) For f(x) to be defined |x^2-10x+9|
(d) f(x)=1/√(4x-|x^2-10x+9| ) For f(x) to be defined |x^2-10x+9|
Q7.
Range of the function f(x)=(x^2+x+2)/(x^2+x+1);x∈R is
Solution
(c) Let y=(x^2+x+2)/(x^2+x+1) ⇒x^2 (y-1)+x(y-1)+(y-2)=0,∀ x∈R Now, D≥0 ⇒(y-1)^2-4(y-1)(y-2)≥0 ⇒ (y-1){(y-1)-4(y-2)}≥0 ⇒ (y-1)(-3y+7)≥0 ⇒ 1≤y≤7/3
(c) Let y=(x^2+x+2)/(x^2+x+1) ⇒x^2 (y-1)+x(y-1)+(y-2)=0,∀ x∈R Now, D≥0 ⇒(y-1)^2-4(y-1)(y-2)≥0 ⇒ (y-1){(y-1)-4(y-2)}≥0 ⇒ (y-1)(-3y+7)≥0 ⇒ 1≤y≤7/3
Q8.
The function f:R→R is defined by f(x)=cos^2x+sin^4x for x∈R, then the range of f(x) is
Solution
(c) y=f(x)=cos^2x+sin^4x ⇒ y=f(x)=cos^2x+sin^2x (1-cos^2x ) ⇒y=cos^2x+sin^2x-sin^2x cos^2x ⇒y=1-sin^2x cos^2x ⇒y=1-〖1/4 sin^2〗2x ∴3/4≤f(x)≤1 (∵0≤sin^22x≤1) ⇒ f(x)∈[3⁄4,1]
(c) y=f(x)=cos^2x+sin^4x ⇒ y=f(x)=cos^2x+sin^2x (1-cos^2x ) ⇒y=cos^2x+sin^2x-sin^2x cos^2x ⇒y=1-sin^2x cos^2x ⇒y=1-〖1/4 sin^2〗2x ∴3/4≤f(x)≤1 (∵0≤sin^22x≤1) ⇒ f(x)∈[3⁄4,1]
Q9.
f(x)=cosx/([2x/π]+1/2), where x is not an integral multiple of π and [.] denotes the greatest integer
function is
Solution
(a) f(-x)=cos〖(-x)〗/([-2x/Ï€]+1/2)=cosx/(-1-[2x/Ï€]+1/2) (as x is not an integral multiple of Ï€) ⇒ f(-x)=-cosx/([2x/Ï€]+1/2)=-f(x) ⇒f(x) is an odd function.
(a) f(-x)=cos〖(-x)〗/([-2x/Ï€]+1/2)=cosx/(-1-[2x/Ï€]+1/2) (as x is not an integral multiple of Ï€) ⇒ f(-x)=-cosx/([2x/Ï€]+1/2)=-f(x) ⇒f(x) is an odd function.
Q10. The number of solutions of
the equation [y+[y]]=2 cosx, where y=1/3 [sinx+[sinx+[sinx ]]] (where [.] denotes the greatest integer
function) is
Solution
60 (d) [y+[y]]=2 cosx ⇒[y]+[y]=2 cosx (∵[x+n]=[x]+n if n∈I) ⇒2[y]=2 cosx⇒[y]=cosx (1) Also y=1/3 [sinx+[sinx+[sinx ]]] =1/3 (3[sinx ]) =[sinx] (2) From (1) and (2) [[sinx ]]=cosx ⇒[sinx ]=cosx The number of solutions is 0
60 (d) [y+[y]]=2 cosx ⇒[y]+[y]=2 cosx (∵[x+n]=[x]+n if n∈I) ⇒2[y]=2 cosx⇒[y]=cosx (1) Also y=1/3 [sinx+[sinx+[sinx ]]] =1/3 (3[sinx ]) =[sinx] (2) From (1) and (2) [[sinx ]]=cosx ⇒[sinx ]=cosx The number of solutions is 0