9394949438

[LATEST]$type=sticky$show=home$rm=0$va=0$count=4$va=0

NCERT Solutions for Class 8 Maths Chapter 12 Exponents and Powers

NCERT solutions for class 8 maths chapter 12 topic 12.2 powers with negative exponents

Question:(i) Find the multiplicative inverse of the following.

2^{-4}

Answer:

The detailed explanation for the question is written below,

The multiplicative inverse is \frac{1}{a^{m}}

So, the multiplicative inverse of 2^{-4} is 2^{4}

Question:(ii) Find the multiplicative inverse of the following.

10^{-5}

Answer:

Here is the detailed solution for the above question,

As we know,

The multiplicative inverse of a^{m} is \frac{1}{a^{m}}

So, the multiplicative inverse of 10^{-5} is 10^{5}

Question:(iii) Find the multiplicative inverse of the following.

7^{-2}

Answer:

The multiplicative inverse of a^{m} is \frac{1}{a^{m}}

So, the multiplicative inverse of 7^{-2} is 7^{2}

Question:(iv) Find the multiplicative inverse of the following.

5^{-3}

Answer:

we know,

The multiplicative inverse of a^{m} is \frac{1}{a^{m}}

So, for 5^{-3} multiplicative inverse is 5^{3}

Question:(v) Find the multiplicative inverse of the following.

10^{-100}

Answer:

The multiplicative inverse of a^{m} is \frac{1}{a^{m}}

So, the multiplicative inverse of 10^{-100} is 10^{100}

NCERT solutions for class 8 maths chapter 12 exponents and powers topic 12.2 powers with negative exponents

Question:(i) Expand the following numbers using exponents.

1025.63

Answer:

1025.63 = 1\times 10^{3}+o\times 10^{2}+2\times 10^{1}+5\times 10^{0}+6\times 10^{-1}+3\times 10^{-2}

Question:(ii) Expand the following numbers using exponents.

1256.249

Answer:

1256.249

= 1\times 10^{3}+2\times 10^{2}+5\times 10^{1}+6\times 10^{0}+2\times 10^{-1}+4\times 10^{-2}+9\times 10^{-3}

NCERT solutions for class 8 maths chapter 12 exponents and powers topic 12.3 laws of exponents

Question:1(i) Simplify and write in exponential form.

(-2)^{-3}\times (-2)^{-4}

Answer:

this is simplified as follows

(-2)^{-3}\times (-2)^{-4}

= \frac{1}{(-2)^{3}}\times \frac{1}{(-2)^{4}}

= \frac{1}{(-2)^{3+4}}=\frac{1}{(-2)^{7}}

= (-2)^{-7}

Question:1(ii) Simplify and write in exponential form .

p^3\times p^{-10}

Answer:

this is simplified as follows

p^3\times p^{-10}

p^{3-10} ............. [a^{m}\times a^{n}=a^{m+n}]

=p^{-7}

Question:1(iii) Simplify and write in exponential form.

3^2 \times 3^{-4}\times 3^6

Answer:

this can be simplified as follows

3^2 \times 3^{-4}\times 3^6

= 3^{2+(-4)+6} ............. [a^{m}\times a^{n}\times a^{o}=a^{m+n+o}]

= 3^{4}= 81

NCERT solutions for class 8 maths chapter 12 exponents and powers-Exercise: 12.1

Question:1 (i) Evaluate.

3^{-2}

Answer:

The detailed explanation for the above-written question is as follows,

We know that,

a^{-m}=\frac{1}{a^{m}}

So, here m =2 and a = 3

3^{-2}=\frac{1}{3^{2}} = \frac{1}{3}\times \frac{1}{3} = \frac{1}{9}

Question: 1(ii) Evaluate.

(-4)^{-2}

Answer:

The detailed explanation for the above-written question is as follows

We know that,

a^{-m}= \frac{1}{a^{m}}

So, here (a = -4) and (m = 2)

Then according to the law of exponent

(-4)^{-2}= \frac{1}{(-4)^{2}} = \frac{1}{(-4)}\times \frac{1}{(-4)} = \frac{1}{16} [ negative \times negative = positive]

Question: 1(iii) Evaluate.

\left(\frac{1}{2}\right )^{-5}

Answer:

The detailed solution for the above-written question is as follows

We know that,

(\frac{a}{b})^{m}=\frac{a^{m}}{b^{m}}\&a^{-m} = \frac{1}{a^{m}}

So, here

a = 1 and b = 2 and m =-5

According to the law of exponent

(\frac{1}{2})^{-5}=\frac{1^{-5}}{2^{-5}} = \frac{-1}{2^{-5}}

=(-1)\times -2\times -2\times -2\times -2\times -2 = 32

Question: 2(i) Simplify and express the result in power notation with a positive exponent.

(-4)^{5}\div (-4)^{8}

Answer:

The detailed solution for the above-written question is as follows

We know the exponential formula

\frac{a^{m}}{a_{n}} = a^{m-n} and a^{-m}= \frac{1}{a^{m}}

So according to this

a = -4, m = 5 and n = 8

\frac{4^{5}}{4_{8}} = -4^{5-8} = -4^{-3}

= (-\frac{1}{4})\times -(\frac{1}{4})\times(-\frac{1}{4}) = -\frac{1}{64}

Question: 2(ii) Simplify and express the result in power notation with positive exponent.

\left (\frac{1}{2^3} \right )^2

Answer:

The detailed solution for the above-written question is as follows

We know the exponential formula

\frac{a^{m}}{b^{m}} = (\frac{a}{b})^{m} and a^{-m}= \frac{1}{a^{m}} and (a^{m})^{n} = a^{mn}

So, we have given

a = 1, b=2

By using above exponential law,

\frac{a^{m}}{b^{m}} = \frac{1}{(2^{3})^{2}} = \frac{1}{2^{6}}

Question: 2(iii) Simplify and express the result in power notation with a positive exponent.

(-3)^4\times \left(\frac{5}{3} \right )^{4}

Answer:

The detailed solution for the above-written question is as follows,

We know the exponential formula

(\frac{a}{b})^{m}= \frac{a^{m}}{b^{m}}

So, (-3)^{4}\times (\frac{5}{3})^{4}= (-3)^{4}\times \frac{5^{4}}{3^{4}} = \frac{625}{1}

Question: 2(iv) Simplify and express the result in power notation with a positive exponent.

(3^{-7}\div 3^{-10})\times 3^{-5}

Answer:

The detailed explanation for the above-written question is as follows

As we know the exponential form

\frac{a^{m}}{b^{n}}= a^{m-n} \& (a^{m}\times a^{n})=a^{m+n}

By using these two form we get,

\frac{3^{-7}}{3^{-10}}\times (3)^{-5}=3^{-7-(-10)} \times (3)^{-5}

=3^{3} \times (3)^{-5}= 3^{-2}

=\frac{1}{3}\times \frac{1}{3}=\frac{1}{9}

Question:2(v) Simplify and express the result in power notation with positive exponent.

2^{-3} \times (-7)^{-3}

Answer:

The detailed solution for the above-written question is as follows,

we know the exponential forms

a^{-m}=\frac{1}{a^{m}} & a^{m}\times b^{m}= (ab)^{m}

So, according to our data,

here initially we use first forms and then the second one.

2^{-3}\times (-7)^{-3}= \frac{1}{2^{3}}\times \frac{1}{(-7)^{3}}

= \frac{1}{(2\times -7)^{3}}= \frac{1}{(-14)^{3}}

Question:3(i) Find the value of.

(3^0 + 4^{-1})\times 2^2

Answer:

The detailed explanation for the above-written question is as follows,

As we know that a^{0}=1

So, 3^{0}=1

now,

=(1+\frac{1}{4})\times 2^{2}

=\frac{5}{4}\times 2^{2}\Rightarrow \frac{5}{2^{2}}\times 2^{2}=5/1

Question: 3(ii) Find the value of.

(2^{-1}\times 4^{-1})\div 2^{-2}

Answer:

The detailed explanation for the above-written question is as follows

Rewrite the equation

(2^{-1}\times 4^{-1})\div 2^{-2}= (2^{-1}\times 2^{-2})\div 2^{-2}

=(2^{-1+(-2)})\div 2^{-2} ................................. a^{m}\times a^{n}= a^{(m+n)}

=(2^{-3})\div 2^{-2} = 2^{-3-(-2)} ........................ a^{m}\div a^{n}= a^{(m-n)}

= 2^{-1}= \frac{1}{2}

Question: 3(iii) Find the value of.

\left (\frac{1}{2}\right)^{-2} + \left (\frac{1}{3}\right)^{-2} + \left (\frac{1}{4}\right)^{-2}

Answer:

The detailed explanation for the above-written question is as follows,

This is the exponential form

(a/b)^{m}= \frac{a^{m}}{b^{m}}

So, \left (\frac{1}{2}\right)^{-2} + \left (\frac{1}{3}\right)^{-2} + \left (\frac{1}{4}\right)^{-2}

=\frac{1}{2^{-2}}+\frac{1}{3^{-2}}+\frac{1}{4^{-2}} .......................using this form a^{m}= \frac{1}{a^{m}}

=2^{2}+3^{2}+4^{2}

= 4+9+16

= 29

Question: 3(iv) Find the value of.

(3^{-1} + 4^{-1} + 5^{-1})^0

Answer:

since we know that

a^{0}=1

(3^{-1} + 4^{-1} + 5^{-1})^0=1

Question: 3(v) Find the value of.

\left \{ \left (\frac{-2}{3} \right )^{-2} \right \}^{2}

Answer:

The detailed explanation for the above-written question is as follows

\left \{ \left (\frac{-2}{3} \right )^{-2} \right \}^{2}

=(-2/3)^{-2\times 2} .............. BY using these form of exponential (a^{m})^{n}=a^{mn}

(-2/3)^{-4}=(-3/2)^{4} ......... use this a^{-m}=\frac{1}{a^{m}}

=\frac{81}{16}

Question:4(i) Evaluate

\frac{8^{-1}\times 5^{3}}{2^{-4}}

Answer:

The detailed explanation for the above written question is as follows

\frac{8^{-1}\times 5^{3}}{2^{-4}}

after rewriting the above equation we get,

\frac{2^{-3}\times 5^{3}}{2^{-4}}=2^{-3-(-4)}\times 5^{3} ...........as we know that \frac{a^{m}}{a^{n}}= a^{m-n}

\\=2^{1}\times 5^{3}\\ = 2\times 125 = 250

An alternate method,

= \frac{5^{3}}{2^{-4}\times 2^{3}}

here you can use first a^{-m}= \frac{1}{a^{m}} and after that use a^{m}\times a^{n}= a^{m+n}

Question: 4(ii) Evaluate

(5^{-1}\times 2^{-1})\times 6^{-1}

Answer:

The detailed explanation for the above-written question is as follows

We clearly see that this is in the form of a^{-m}=\frac{1}{a^{m}}

So, (5^{-1}\times 2^{-1})\times 6^{-1}= (\frac{1}{5}\times \frac{1}{2})\times \frac{1}{6}

<img alt="= \frac{1}{60}" height="37"

src="https://lh6.googleusercontent.com/tWrK1l7Vs_CryR0RTqBZym2YkY8KSTLKzBzWhX6bxpVjBLfm8c30nGvxFI4GuUZED1uEoaq8sHE17AmWlPLXn08A4gxWmw8tGduT2_gYBXLQKsD1wBXwyrHn1KPhZe6efk_0aEc" style="margin-left: 0px; margin-top: 0px;" width="39" />

Question: 5 Find the value of m for which

5^m \div 5^{-3} = 5^5

Answer:

We have,

a^{m}\div a^{n}= a^{m-n}

Here a = 5 and n =-3 and m-n = 5

therefore,

5^{m}\div 5^{-3}= 5^{m+3} = 5^{5}

By comparing from both sides we get

m+3 = 5

m= 2

Question: 6(i) Evaluate

\left \{\left (\frac{1}{3} \right )^{-1} - \left( \frac{1}{4} \right )^{-1} \right \}^{-1}

Answer:

The detailed solution for the above-written question is as follows

\left \{\left (\frac{1}{3} \right )^{-1} - \left( \frac{1}{4} \right )^{-1} \right \}^{-1}

= [(1\times 3)-(1\times 4)]^{-1} .............by using a^{-m}= \frac{1}{a^{m}}

= [3-4]^{-1}

\\= [-1]^{-1}\\=-1

Question: 6(ii) Evaluate

\left ( \frac{5}{8} \right )^{-7}\times \left (\frac{8}{5}\right)^{-4}

Answer:

The detailed solution for the above-written question is as follows

\left ( \frac{5}{8} \right )^{-7}\times \left (\frac{8}{5}\right)^{-4}

=\frac{5^{-7}}{8^{-7}}\times \frac{8^{-4}}{5^{-4}} ................ using the form \frac{a^{m}}{b^{m}}= (a/b)^{m}

=5^{-7+4}\times 8^{-4+7} ............using a^{m} \div a^{n} = a^{m-n}

= 5^{-3}\times 8^{+3}

\\= \frac{8^{3}}{5^{3}}\\\\=\frac{512}{125}

Question: 7(i) Simplify

\frac{25\times t^{-4}}{5^{-3}\times 10\times t^{-8}}\;\;(t\neq 0)

Answer:

The detailed solution for the above-written question is as follows

\frac{25\times t^{-4}}{5^{-3}\times 10\times t^{-8}}\;\;(t\neq 0)

we can write 25= 5^{2}

So, after rewriting the equation,

\frac{5^{2}\times t^{-4}}{5^{-3}\times 10\times t^{-8}}

= \frac{5^{2+3}\times t^{-4+8}}{10} .................using the form [a^{m}\div a^{n}= a^{m-n}]

= \frac{5^{5}\times t^{4}}{10} .............(By expanding we have now)

= \frac{625t^{4}}{2}

Question: 7(ii) Simplify.

\frac{3^{-5}\times 10^{-5}\times 125}{5^{-7}\times6 ^{-5}}

Answer:

The detailed solution for the above-written question is

\frac{3^{-5}\times 10^{-5}\times 125}{5^{-7}\times6 ^{-5}}

we can write 125 = 5^{3} and 6^{-5} can be written as (2\times 3)^{-5}

Now, rewriting the equation, we get

=\frac{3^{-5}\times 10^{-5}\times 5^{3}}{5^{-7}\times(2\times 3) ^{-5}}

=\frac{3^{-5}\times 10^{-5}\times 5^{3+7}}{(2\times 3) ^{-5}} .............by using [a^{m}\div a^{n}=a^{m-n}]

=\frac{ 10^{-5}\times 5^{10}}{(2) ^{-5}} .....................Use [a^{m}\div a^{n}=a^{m-n}]

5^{10-5}= 5^{5}=3125 .........................As [10^{-5} = (2\times 5)^{-5}=2^{-5}\times 5^{-5}] . 2^{-5} can be cancelled out with the denominator 2^{-5}

NCERT solutions for class 8 maths chapter 12 exponents and powers topic 12.4 use of exponents to express small numbers in standard form

Question: 1(i) Write the following numbers in standard form.

0.000000564

Answer:

the standard form of 0.000000564 is

\frac{564}{1000000000}=5.64\times10^{-7}

Question: 1(ii) Write the following numbers in standard form.

0.0000021

Answer:

The standard form 0.0000021 is

=\frac{21}{10000000}=2.1\times 10^{-6}

Question: 1(iii) Write the following numbers in standard form.

21600000

Answer:

The standard form 21600000 is

=2.16\times 10^{7}

Question: 1(iv) Write the following numbers in standard form.

15240000

Answer:

The standard form 15240000

=1.524\times 10^{7}

Question: 2 Write all the facts given in the standard form .

Answer:

  1. Distance between sun and earth 1.496\times10^{11}m

  2. speed of light is 3\times10^{8}m/s

  3. The avg. diameter of red blood cells is (7\times10^{-6}mm)

  4. the distance of the moon from the earth is (3.84467\times10^{8}m)

  5. size of the plant cell is (1.275\times10^{-5}m)

  6. The diameter of the wire on a computer chip is (3\times10^{-6}m)

  7. the height of the Mount Everest is (8.848\times10^{3}m)

NCERT solutions for class 8 maths chapter 12 exponents and powers-Exercise: 12.2

Question: 1(i) Express the following numbers in standard form .

0.0000000000085

Answer:

The standard form is 8.5\times 10^{-12}

Question: 1(ii) Express the following numbers in standard form.

0.00000000000942

Answer:

The standard form is 9.42\times 10^{-12}

Question: 1(iii) Express the following numbers in standard form.

6020000000000000

Answer:

The standard form is 6.02\times 10^{15}

Question: 1(iv) Express the following numbers in standard form.

0.00000000837

Answer:

The standard form of the given number is 8.37\times10^{-9}

Question: 1(v) Express the following numbers in standard form.

31860000000

Answer:

The standard form is 3.186\times10^{10}

Question: 2(i) Express the following numbers in usual form.

3.02\times 10^{-6}

Answer:

3.02\times 10^{-6}

=\frac{3.02}{1000000}

=0.00000302

this is the usual form

Question: 2(ii) Express the following numbers in usual form.

4.5 \times 10^4

Answer:

4.5 \times 10^4=4.5\times 10000

=45000

this is the usual form

Question:2(iii) Express the following numbers in the usual form.

3\times 10^{-8}

Answer:

3\times 10^{-8}

\frac{3}{100000000} = 0.000000030

this is the usual form

Question: 2(iv) Express the following numbers in usual form.

1.0001\times 10^9

Answer:

1.0001\times 10^9

=1.0001\times 100000000

=1000100000

this is the usual form

Question: 2(v) Express the following numbers in usual form.

5.8\times 10^{12}

Answer:

5.8\times 10^{12}

=5.8\times 100000000000

=5800000000000

this is the usual form

Question:2(vi) Express the following numbers in usual form.

3.61492 \times 10^6

Answer:

3.61492 \times 10^6

= 3.61492\times 1000000

= 3614920

17155

Question:3(i) Express the number appearing in the following statements in standard form.

1 micron is equal to \frac{1}{1000000}m .

Answer:

1 micron is equal to

\frac{1}{1000000}m

= 1\times 10^{-6}

Question:3(ii) Express the number appearing in the following statements in standard form.

Charge of an electron is 0.000,000,000,000,000,000,16 coulomb.

Answer:

Charge of an electron is 0.000,000,000,000,000,000,16 coulomb.

=1.6\times 10^{-19} coulomb.

Question:3(iii) Express the number appearing in the following statements in standard form.

Size of a bacteria is 0.0000005 m.

Answer:

Size of a bacteria is 0.0000005 m

\frac{5}{10000000}=5\times 10^{-7}m

Question:3(iv) Express the number appearing in the following statements in standard form.

Size of a plant cell is 0.00001275 m.

Answer:

Size of a plant cell is0.00001275m

=\frac{1275}{10000}=1.275\times10^{-5}m

Question:3(v) Express the number appearing in the following statements in standard form.

Thickness of a thick paper is 0.07 mm

Answer:

The thickness of a thick paper is 0.07

=\frac{7}{100}=7\times 10^{-2}mm

Question:4 In a stack there are 5 books each of thickness 20mm and 5 paper sheets each of thickness 0.016 mm. What is the total thickness of the stack.

Answer:

the thickness of each book = 20mm

So, the thickness of 5 books = (5\times 20)=100 mm

the thickness of one paper sheet =0.016mm

So, the thickness of 5 paper sheet = (5\times 0.016)=0.08 mm

the total thickness of the stack = (100+0.08)mm

=100.08 mm or

(1.008\times10^{-2}mm)

NCERT Class 8 Mathematics Solutions

Chapter 01 - Rational Numbers

Chapter 02 - Linear Equations in One Variable

Chapter 03 -Understanding Quadrilaterals

Chapter 04 - Practical Geometry

Chapter 05 - Data Handling

Chapter 06 - Squares and Square Roots

Chapter 07 - Cubes and Cube Roots

Chapter 08 - Comparing Quantities

Chapter 09 - Algebraic Expressions and Identities

Chapter 10 - Visualising Solid Shapes

Chapter 11 - Mensuration

Chapter 12 - Exponents and Powers

Chapter 13 - Direct and Indirect proportions

Chapter 14 - Factorisation

Chapter 15 - Introduction to Graphs

Chapter 16 - Playing with Numbers

Want to know more

Please fill in the details below:

INNER POST ADS

Latest IITJEE Articles$type=three$c=3$author=hide$comment=hide$rm=hide$date=hide$snippet=hide

Latest NEET Articles$type=three$c=3$author=hide$comment=hide$rm=hide$date=hide$snippet=hide

Name

Admissions,1,Alternating Current,60,AP EAMCET 2020,1,Basic Maths,2,BCECE 2020,1,best books for iit jee,2,best coaching institute for iit,1,best coaching institute for iit jee preparation,1,best iit jee coaching delhi,1,best iit jee coaching in delhi,2,best study material for iit jee,4,BITSAT Registration 2020,1,Blog,62,books for jee preparation,1,books recommended by iit toppers,3,Capacitance,3,CBSE,1,CBSE accounts exam,1,CBSE boards,1,CBSE NEET,9,cbse neet 2019,3,CBSE NEET 2020,1,cbse neet nic,1,Centre of Mass,2,Chemistry,58,Class 12 Physics,15,coaching for jee advanced,1,coaching institute for iit jee,2,Collision,2,COMEDK UGET 2020 Application Form,1,COMEDK UGET 2020 Exam Form,1,COMEDK UGET news,1,CUCET 2020,2,Current Electricity,4,CVR college,1,Digestion and Absorption Notes PDF,1,Electromagnetic Induction,3,Electronics,1,Electrostatics,3,Energy,1,Engineering & Medical,1,Fluid Mechanics,4,Gravitation,2,GUJCET 2020 Application Form,1,Heat,4,iit admission,1,iit advanced,1,iit coaching centre,3,iit coaching centre in delhi,2,iit coaching classes,2,iit coaching in delhi,1,iit coaching institute in delhi,1,iit entrance exam,1,iit entrance exam syllabus,2,iit exam pattern,2,iit jee,5,iit jee 2019,3,iit jee advanced,2,iit jee books,3,iit jee coaching,2,iit jee exam,3,iit jee exam 2019,1,iit jee exam pattern,3,iit jee institute,1,iit jee main 2019,2,iit jee mains,3,iit jee mains syllabus,2,iit jee material,1,iit jee online test,3,iit jee practice test,3,iit jee preparation,6,iit jee preparation in delhi,2,iit jee preparation time,1,iit jee preparation tips by toppers,2,iit jee question paper,1,iit jee study material,3,iit jee study materials,2,iit jee syllabus,2,iit jee syllabus 2019,2,iit jee test,3,iit preparation,2,iit preparation books,5,iit preparation time table,2,iit preparation tips,2,iit syllabus,2,iit test series,3,IITJEE,100,Important Biology Notes for NEET Preparation,1,IPU CET,1,JEE Advanced,83,jee advanced exam,2,jee advanced exam pattern,1,jee advanced paper,1,JEE Books,1,JEE Coaching Delhi,3,jee exam,3,jee exam 2019,6,JEE Exam Pattern,2,jee exam pattern 2019,1,jee exam preparation,1,JEE Main,85,jee main 2019,4,JEE Main 2020,1,JEE Main 2020 Application Form,2,JEE Main 2020 news,2,JEE Main 2020 Official Answer Key,1,JEE Main 2020 Registration,1,JEE Main 2020 Score,1,JEE Main application form,1,jee main coaching,1,JEE Main eligibility criteria,3,jee main exam,1,jee main exam 2019,3,jee main online question paper,1,jee main online test,3,JEE Main Paper-2 Result,1,jee main registration,2,jee main syllabus,2,JEE mains 2020,1,jee mains question bank,1,jee mains test papers,3,JEE Mock Test,2,jee notes,1,jee past papers,1,JEE Preparation,2,jee preparation in delhi,1,jee preparation material,4,JEE Study Material,1,jee syllabus,6,JEE Syllabus Chemistry,1,JEE Syllabus Maths,1,JEE Syllabus Physics,1,jee test series,3,KCET - 2020,1,Kinematics,1,Latest article,5,Latest Articles,61,Latest News,34,latest news about neet exam,1,Laws of Motion,2,Magnetic Effect of Current,3,Magnetism,3,MHT CET 2020,2,MHT CET 2020 exam schedule,1,Modern Physics,1,NCERT Solutions,15,neet,3,neet 2019,1,neet 2019 eligibility criteria,1,neet 2019 exam date,2,neet 2019 test series,2,NEET 2020,2,NEET 2020 Application Form,1,NEET 2020 Eligibility Criteria,1,NEET 2020 Registration,1,neet application form,1,neet application form 2019 last date,1,Neet Biology Syllabus,1,Neet Books,3,neet eligibility criteria,3,neet exam 2019,7,neet exam application,1,neet exam date,1,neet exam details,1,neet exam pattern,6,neet exam pattern 2019,2,neet examination,1,neet mock test 2019,1,Neet Notes,3,Neet Online Application Form,3,neet online test,2,neet past papers,1,neet physics syllabus,1,neet practice test,2,NEET preparation books,1,neet qualification marks,1,NEET question paper 2019,1,neet question papers,1,neet registration,1,Neet Study Material,3,neet syllabus,6,neet syllabus 2019,5,NEET Syllabus 2020,1,neet syllabus chemistry,1,neet syllabus for biology,1,neet syllabus for physics,1,neet test series,1,neet ug 2019,2,news,5,online study material for iit jee,1,Optical Instruments,1,Physics,110,physics books for iit jee,1,Power,1,Practical Physics,1,Quiz,5,Ray Optics,1,Rotational Motion,3,SHM,3,Simple Harmonic Motion,3,study materials for iit jee,1,Study Notes,110,study notes for iit jee,1,Thermodynamics,4,TS EAMCET Notification,2,Units and Dimensions,1,UPSEE 2020,1,UPSEE 2020 Application Form,2,UPSEE EXAM,1,Vectors,2,VITEE Application form,1,Wave Motion,3,Wave Optics,1,WBJEE 2020 Admit Card,1,WBJEE 2020 Answer Key,1,Work,1,
ltr
static_page
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET & IIT JEE COACHING: ncert-solutions-class-8-maths-ch-12-exponents-and-powers
ncert-solutions-class-8-maths-ch-12-exponents-and-powers
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET & IIT JEE COACHING
https://www.cleariitmedical.com/p/ncert-solutions-class-8-maths-ch-12.html
https://www.cleariitmedical.com/
https://www.cleariitmedical.com/
https://www.cleariitmedical.com/p/ncert-solutions-class-8-maths-ch-12.html
true
7783647550433378923
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy

STAY CONNECTED