9394949438

[LATEST]$type=sticky$show=home$rm=0$va=0$count=4$va=0

NCERT Solutions for Class 8 Maths Chapter 14 Factorization

NCERT solutions for class 8 maths chapter 14 factorization topic 14.2.1 method of common factor

Question:(i) Factorise:

12 x +36

Answer:

We have
12x = 2 \times 2 \times 3 \times x
36 = 2 \times 2 \times 3 \times 3

So, we have 2 \times 2 \times 3 common in both
Therefore,

12x + 36 =2 \times 2 \times 3 (x + 3)

12x + 36 = 12(x + 3)

Question:(ii) Factorise : 22y-32z

Answer:

We have,
22y=2 \times 11 \times y
33z =3 \times 11 \times z
So, we have 11 common in both
Therefore,

22y - 33z = 11(2y - 3z)

Question:(iii) Factorise :

( iii) \: \: 14 pq + 35 pqr

Answer:

We have
14pq =2 \times 7 \times p \times q
35pqr =5 \times 7 \times p \times q \times r
So, we have

7 \times p \times q common in both
Therefore,

14pq + 35pqr =7pq (2 + 5r)

NCERT solutions for class 8 maths chapter 14 factorization-Exercise: 14.1

Question:1(i) Find the common factors of the given terms.

(i) 12 x , 36

Answer:

We have
12x ={\color{Red} 2 \times 2 \times 3}\times x
36 = {\color{Red} 2 \times 2 \times 3}\times 3
So, the common factors between the two are

2\times2\times3=12

Question:1(ii) Find the common factors of the given terms

(ii) 2y , 22xy

Answer:

We have,
2y = {\color{Red} 2 \times y}
22xy = {\color{Red} 2} \times 11 \times x {\color{Red} \times y}
Therefore, the common factor between these two is 2y

Question:1(iii) Find the common factors of the given terms

(iii) 14 pq, 28 p^2 q^2

Answer:

We have,
14pq = {\color{Red} 2 \times 7 \times p \times q}
28p^2q^2 = 2 \times {\color{Red} 2 \times 7 \times p} \times p{\color{Red} \times q} \times q
Therefore, the common factor is

2\times7\times p\times q=14pq

Question:1(iv) Find the common factors of the given terms.

(iv) 2x , 3x ^2 , 4

Answer:

We have,
2x = 2 \times x
3x^2 = 3 \times x \times x
4 = 2 \times 2
Therefore, the common factor between these three is 1

Question:1(v) Find the common factors of the given terms

( v ) 6 abc , 24 ab^2 , 12 a^2 b

Answer:

We have,
6abc ={\color{Red} 2 \times 3 \times a \times b }\times c
24ab^2 = 2 \times 2\times {\color{Red} 2\times 3 \times a \times b} \times b
12a^2b = 2 \times {\color{Red} 2\times 3 \times a} \times a{\color{Red} \times b}
Therefore, the common factors is

2 \times 3 \times a \times b = 6ab

Question:1(vi) Find the common factors of the given terms

(vi)16 x ^ 3 , -4 x ^ 2 , 32 x

Answer:

We have,
16x^3 = 2 \times 2 \times {\color{Red} 2 \times 2 \times x} \times x \times x
4x^2 = {\color{Red} 2 \times 2 \times x} \times x
32x = 2 \times 2 \times 2 \times{\color{Red} 2 \times 2 \times x}
Therefore, the common factors is

2 \times 2 \times x = 4x

Question:1(vii) Find the common factors of the given terms

(vii) 10 pq , 20 qr , 30 rp

Answer:

We have,
10pq ={\color{DarkRed} 2 \times 5} \times p \times q
<img alt="20qr = 2\times{\color{DarkRed} 2 \times 5 }\times q \times r" height="17"

src="https://lh4.googleusercontent.com/Ss8ADbZ4hBQ70-uoJgKlTa_FN-nCGSJnPuZy52TF0xY9yYMom99vCtS000Dk52edALKSK5d1g7Ii9OBkAvP679IyFyXIecTCxYAJWA2UjOgjt5Ft30fG5FiUH-dM0vZZS7UeSGQ" style="margin-left: 0px; margin-top: 0px;" width="192" />
30rp ={\color{DarkRed} 2}\times 3{\color{DarkRed} \times 5} \times r \times p
Therefore, the common factors between these three is

2 \times 5 =10

Question:1(viii) Find the common factors of the given terms

(viii)3 x ^2 y^3 , 10 x ^3 y ^ 2 , 6 x^ 2 y^2 z

Answer:

We have,
3x^{2}y^{2}= 3 \times {\color{Red} x \times x \times y \times y}
10x^{3}y^{2}=2 \times 5 \times x \times {\color{Red} x\times x \times y \times y}
6x^{2}y^{2}z=2 \times 3 \times{\color{Red} x \times x \times y \times y} \times z
Therefore, the common factors between these three are x\times x\times y \times y =x^{2}y^{2}

Question:2(i) Factorise the following expressions

(i)7x -42

Answer:

We have,
7x = 7 \times x \\ 42=7\times 2 \times 3=7\times 6\\ 7x-42=7x-7\times 6=7(x-6)

Therefore, 7 is a common factor

Question:2(ii) Factorise the following expressions

(ii)6 p - 12 q

Answer:

We have,
6p = 2 \times 3 \times p
12q = 2 \times 2 \times 3 \times q
\therefore on factorization

6p -12q = (2\times 3 \times p) - (2\times 2 \times 3 \times q) = (2\times 3)(p-2q) = 6(p-2q)

Question:2(iii) Factorise the following expressions

(iii)7 a ^2 + 14 a

Answer:

We have,
7a^2 = 7 \times a \times a
14a = 2 \times 7 \times a
\therefore7a^2+14a = (7\times a \times a)+(2 \times 7 \times a) = (7 \times a)(a+2)
= 7a(a+2)

Question:2(iv) Factorise the following expressions

(iv)-16 z + 20 z^3

Answer:

We have,
-16z = -1 \times 2 \times 2 \times 2 \times 2 \times z
20z^3 = 2 \times 2 \times 5 \times z \times z \times z
\therefore on factorization we get,
-16z+20z^3 = (-1 \times 2 \times 2 \times 2 \times 2 \times z)+(2 \times 2 \times 5 \times z \times z \times z )
= (2\times 2 \times z)(-1 \times 2 \times 2+ 5 \times z \times z )
= 4z(-4+5z^2 )

Question:2(v) Factorise the following expressions

20 l^2 m + 30 alm

Answer:

We have,
20l^2m = 2 \times 2 \times 5 \times l \times l \times m
30alm = 2 \times 3 \times 5 \times a \times l \times m
\therefore on factorization we get,
20l^2m+30alm =(2\times 2 \times 5 \times l \times l \times m) + (2 \times 3 \times 5 \times a \times l \times m)
=(2\times 5 \times l \times m)(2\times l + 3 \times a )
=10lm(2l+3a)

Question:2(vi) Factorise the following expressions

5 x^2 y - 15 xy^2

Answer:

We have,
5x^2y = 5 \times x\times x \times y
15xy^2 =3\times 5 \times x\times y \times y
\therefore on factorization we get,
5x^2y - 15xy^2 = (5 \times x \times x \times y ) - (3\times 5 \times x \times y \times y )
=(5\times x \times y) ( x - 3\times y )
=5xy (x-3y)

Question:2(vii) Factorise the following expressions

10 a ^2 - 15 b^2 +20 c^2

Answer:

We have,
10a^2 = 2 \times 5 \times a \times a
15b^2 = 3 \times 5 \times b \times b
20c^2 = 2\times 2 \times 5 \times c \times c
\therefore on factorization we get,
10a^2-15b^2+20c^2 = (2\times 5 \times a \times a)-(3\times 5 \times b \times b)+(2\times 2 \times 5 \times c \times c)=5 (2 \times a \times a-3 \times b \times b+2\times 2 \times c \times c)
=5(2a^2-3b^2+4c^2)

Question:2(viii) Factorise the following expressions

- 4 a ^2 + 4 ab - 4ca

Answer:

We have,
-4a^2 = -1\times 2 \times 2 \times a\times a
4ab = 2 \times 2 \times a\times b
4ca = 2 \times 2 \times c\times a
\therefore on factorization we get,
-4a^2+4ab-4ca = (-1 \times 2 \times 2 \times a\times a )+( 2 \times 2 \times a\times b )- (2 \times 2 \times c\times a)

src="https://lh3.googleusercontent.com/DjxprQzpQEmOgRkrVWxMQkssFhWtJsvauh543sKzwcsl2dJ_DFmaqC77QGOLprtXa_fcPnz8i_T5CobT71IXB0c4mSkSLAKJtD02fc5GcsDjBj9cLwGyw_ky-W3IEb-yUFnDqrI" style="margin-left: 0px; margin-top: 0px;" width="565" />

=(2 \times 2 \times a) (-1 \times a + b - c)
= 4a(-a+b-c)

Question:2(ix) Factorise the following expressions

x^2 yz + xy^2 z + xyz^2

Answer:

We have,
x^2yz =x \times x \times y \times z
xy^2z =x \times y \times y \times z
xyz^2 =x \times y \times z \times z
Therefore, on factorization we get,
x^2yz+xy^2z+xyz^2 =(x \times x \times y \times z)+(x \times y \times y \times z)+(x \times y \times z \times z)

=( x \times y \times z)(x + y + z)
=xyz(x+y+z)

Question:2(x) Factorise the following expressions

a x^2 y + bxy^2 + cxyz

Answer:

We have,
ax^2y = a \times x \times x \times y
bxy^2 = b \times x \times y \times y
cxyz = c \times x \times y \times z
Therefore, on factorization we get,
ax^2y+bxy^2+cxyz = ( a \times x \times x \times y)+( b \times x \times y \times y)+(c \times x \times y \times z)= (x\times y)( a \times x+ b \times y+c \times z)

= xy(ax+by+cz)

Question:3(i) Factorise x ^ 2 + xy + 8 x + 8y

Answer:

We have,
x^2 = x \times x
xy = x \times y
8x = 8 \times x
8y = 8 \times y
Therefore, on factorization we get,
x^2+xy+8x+8y = (x \times x)+(x\times y )+(8 \times x)+(8 \times y)
= x(x +y )+8(x+ y)
= (x+8)(x+y)

Question:3(ii) Factorise

15 xy -6 x +5 y -2

Answer:

We have,
15xy = 3 \times 5 \times x \times y
6x = 2 \times 3 \times x
5y = 5 \times y
2 = 2
Therefore, on factorization we get,
15xy - 6x +5y-2 = (3\times 5 \times x \times y)-(2 \times 3 \times x)+(5\times y)-2
=(5 \times y)(3\times x + 1)-2(3\times x + 1)
=(5y-2)(3x+1)

Question:3(iii) Factorise

ax + bx - ay - by

Answer:

We have,
ax+bx-ay-by = a(x-y)-b(x-y)
=(a-b)(x-y)
Therefore, on factorization we get,
(a-b)(x-y)

Question:3(iv) Factorise

15 pq + 15 + 9q + 25p

Answer:

We have,
15pq + 15 + 9q + 25p = 5 p(3q + 5) + 3 (3q + 5)
= (3q + 5)(5p + 3)
Therefore, on factorization we get,
(3q + 5)(5p + 3)

Question:3(v) Factorise

z-7 + 7 xy - xyz

Answer:

We have,
z - 7 + 7xy - xyz = z(1 - xy) -7(1 - xy)
= (1 - xy)(z - 7)
Therefore, on factorization we get,
(1 - xy)(z - 7)

NCERT solutions for class 8 maths chapter 14 factorization-Exercise: 14.2

Question:1(i) Factorise the following expressions

a ^ 2 + 8a + 16

Answer:

We have,
a^2 + 8a + 16 = a^2+ 4a + 4a + 16
= a(a + 4) + 4 (a+4)
= (a+4)(a+4) =(a+4)^{2}
Therefore,
a^2+8a+16 = (a+4)^2

Question:1(ii) Factorise the following expressions

p^2 -10 p + 25

Answer:

We have,
p^2 - 10p + 25 = p^2 - 5p - 5p + 25
= p(p - 5) -5 (p -5)
= (p - 5)(p - 5) =(p-5)^{2}
Therefore,
p^2-10p+25 =(p-5)^2

Question:1(iii) Factorise the following expressions

25 m ^2 + 30 m + 9

Answer:

We have,
25m^2 + 30m + 9 = 25m^2 + 15m + 15m + 9
= 5m (5m + 3) +3(5m + 3)
= (5m + 3) (5m + 3) =(5m+3)^{2}
Therefore,
25m^2+30m+9 = (5m+3)^2

Question:1(iv) Factorise the following expressions

49 y^2 + 84 yz + 36 z^2

Answer:

We have,
49 y^2 + 84 yz + 36 z^2= 49y^2 + 42yz + 42yz + 36z^2
= 7y(7y + 6z) + 6z(7y + 6z)
= (7y + 6z)(7y + 6z) =(7y+ 6z)^{2}
Therefore,
49y^2+84yz+36z^2=(7y+6z)^2

Question:1(v) Factorise the following expressions

4 x^2 - 8x + 4

Answer:

We have,
4 x^2 - 8x + 4= 4x^2 - 4x - 4x + 4
= 4x(x - 1) -4(x - 1)
= 4(x-1)(x-1) \\\ \ \ = 4(x-1)^{2}

Question:1(vi) Factorise the following expressions

121 b^2 - 88 bc + 16 c^2

Answer:

We have,
121 b^2 - 88 bc + 16 c^2= 121b^2 - 44bc - 44bc + 16c^2
= 11b(11b - 4c) - 4c(11b - 4c)
= (11b-4c)(11b-4c) =(11b -4c)^{2}
Therefore,
121 b^2 - 88 bc + 16 c^2=(11b -4c)^{2}

Question:1(vii) Factorise the following expressions

( l+m ) ^2 - 4lm

Answer:

We have,
( l+m ) ^2 - 4lm = l^{2} + 2ml + m^{2} - 4lm(using \ (a+b)^{2} = a^{2} + 2ab + b^{2})
l^{2} - 2lm + m^{2}
(l-m)^{2}(using \ (a-b)^{2} = a^{_2} -2ab + b^{2})

Question:1(viii) Factorise the following expressions

a ^4 +2 a ^2 b ^ 2 + b ^ 4

Answer:

We have,
a ^4 +2 a ^2 b ^ 2 + b ^ 4 = a^{4} + a^{2}b^{2} + a^{2}b^{2} + b^{4}
a^{2}(a^{2 }+ b^{2}) + b^{2}(a^{2}+b^{2}) = (a^{2}+b^{2})(a^{2}+b^{2}) = (a^{2}+b^{2})^{2}

Question:2(i) Factorise :

4 p^2 - 9 q ^2

Answer:

This can be factorized as follows
4 p^2 - 9 q ^2 = (2p)^{2} - (3q)^{2}= (2p - 3q)(2p + 3q)(using \ (a)^{2} - (b)^{2} = (a-b)(a+b))

Question:2(ii) Factorise the following expressions

63 a ^2 - 112 b ^ 2

Answer:

We have,
63 a ^2 - 112 b ^ 2= 7(9a^{2} - 16b^{2})= 7((3a)^{2} - (4b)^{2})=7 (3a - 4b)(3a + 4b)
(using \ (a)^{2} - (b)^{2} = (a-b)(a+b))

Question:2(iii) Factorise

49 x^2 - 36

Answer:

This can be factorised as follows
49 x^2 - 36 = (7x)^{2} - (6)^{2}= (7x - 6)(7x + 6)(using \ (a)^{2} - (b)^{2} = (a-b)(a+b) )

Question:2(iv) Factorise

16 x^5 - 144 x ^ 3

Answer:

The given question can be factorised as follows
16 x^5 - 144 x ^ 3= 16x^3(x^{2}- 9)
= 16x^3((x)^{2}- (3)^{2})= 16x^3(x-3)(x+3)(using \ (a)^{2}- (b)^{2} = (a-b)(a+b))

Question:2(v) Factorise

(l+m) ^ 2 - ( l- m ) ^2

Answer:

We have,
(l+m) ^ 2 - ( l- m ) ^2= [(l + m) - (l - m)][(l + m) + (l - m)] (using a^{2} - b^{2} = (a-b)(a+b) )
<img alt="= (l + m - l + m)(l + m + l - m)" height="18"

src="https://lh6.googleusercontent.com/7n9Osk0x9mzggIf5EhzuRIVjoamvGsAg7oAvqBzW_vEutnQcNMHfAdWJIIohDCWF9uxPvzMQlxC0urWVe6ZCEt6T7FrQicXsyfSsz1T8fGexhBVmKHM83VtwCm-b78X5ttNx7CE" style="margin-left: 0px; margin-top: 0px;" width="265" />
= (2m)(2l) = 4ml

Question:2(vi) Factorise

9 x ^2 y^2 - 16

Answer:

We have,
9 x ^2 y^2 - 16 = (3xy)^{2} -(4)^{2} (using (a)^{2} -(b)^{2} = (a-b) (a+b) )
= (3xy - 4 )(3xy + 4)

Question:2(vii) Factorise

( x ^2 -2xy + y^2 ) - z ^2

Answer:

We have,
( x ^2 -2xy + y^2 ) - z ^2 = (x-y)^{2} - z^{2}(using \ (a-b)^{2} = a^{2} -2ab + b^{2})
= (x - y - z)(x - y + z)(using \ (a)^{2} - (b)^{2} = (a -b ) (a+b))

Question:2(viii) Factorise

25 a ^2 -4 b ^2 + 28 bc - 49 c ^2

Answer:

We have,
25 a ^2 -4 b ^2 + 28 bc - 49 c ^2 = 25a^{2} - (2b-7c)^{2}(using \ (a-b)^{2} = a^{2} -2ab + b^{2})
(5a)^{2} - (2b-7c)^{2}(using \ (a)^{2} - (b)^{2} = (a -b ) (a+b))
=(5a - (2b - 7c))(5a + (2b - 7c) )
= (5a - 2b + 7c)(5a + 2b - 7c )

Question:3(i) Factorise the following expressions

ax ^2 + bx

Answer:

We have,
ax^2 = a \times x \times x
bx = b \times x
Therefore,
ax ^2 + bx= (a \times x \times x) + (b \times x)
= x(a \times x + b)
= x(ax + b)

Question:3(ii) Factorise the following expressions

7p^2 + 21 q ^2

Answer:

We have,
7p^2 = 7 \times p \times p
21q^3 = 3 \times 7 \times q \times q
Therefore,
7p^2 + 21 q ^2= (7 \times p \times p) + (3 \times 7 \times q \times q)
=7(p^{2}+ 3q^{2})

Question:3(iii) Factorise the following expressions

2 x^3 + 2xy^2 + 2 xz ^2

Answer:

We have,
2x^3 = 2 \times x \times x \times x
2xy^2 = 2 \times x \times y \times y
2xz^2 = 2 \times x \times z \times z
Therefore,
2 x^3 + 2xy^2 + 2 xz ^2= (2 \times x \times x \times x) + ( 2 \times x \times y \times y) + ( 2 \times x \times z \times z)
= (2 \times x) [(x \times x) + (y \times y ) + (z \times z)]
= 2x(x^2+y^2+z^2)

Question:3(iv) Factorise the following expressions

am^2 + bm ^2 + bn ^2 + an^2

Answer:

We have,
am^2 + bm ^2 + bn ^2 + an^2= m^2(a + b) + n^2(a + b)
= (a + b)(m^{2 }+n^{2})

Question:3(v) Factorise the following expressions

( lm + l ) + m + 1

Answer:

We have,
( lm + l ) + m + 1= lm + l + m + 1
= l(m + 1) +1(m + 1)
= (m + 1)(l + 1)

Question:3(vi) Factorise the following expressions

y ( y + z ) + 9 ( y + z )

Answer:

We have,
y ( y + z ) + 9 ( y + z )
Take ( y+z) common from this
Therefore,
y ( y + z ) + 9 ( y + z )= (y + z)(y + 9)

Question:3(vii) Factorise the following expressions

5 y ^ 2 - 20 y - 8z + 2yz

Answer:

We have,
5 y ^ 2 - 20 y - 8z + 2yz= 5y(y - 4) + 2z(y - 4)
= (y - 4)(5y + 2z)
Therefore,
5 y ^ 2 - 20 y - 8z + 2yz= (y - 4)(5y + 2z)

Question:3(viii) Factorise

10 ab + 4a + 5b + 2

Answer:

We have,
10 ab + 4a + 5b + 2= 2a(5b + 2) + 1(5b + 2)
= (5b + 2)(2a + 1)
Therefore,
10 ab + 4a + 5b + 2= (5b + 2)(2a + 1)

Question:3(ix) Factorise the following expressions

6 xy - 4 y + 6 - 9 x

Answer:

We have,
6 xy - 4 y + 6 - 9 x= 2y(3x - 2) - 3 (3x - 2)
= (3x - 2)(2y - 3)
Therefore,
6 xy - 4 y + 6 - 9 x= (3x - 2)(2y - 3)

Question:4(i) Factorise a ^ 4 - b ^ 4

Answer:

We have,
a ^ 4 - b ^ 4 = (a^{2})^{2} - (b^{2})^{2} = (a^{2} - b^{2})(a^{2} + b^{2}) = (a-b)(a+b)(a^{2} + b^{2})
using \ (x^{2} - y^{2}) = (x-y)(x+y)

Question:4(ii) Factorise p ^ 4 - 81

Answer:

We have,
p ^ 4 - 81 =
using \ a^{2} - b^{2} = (a-b)(a+b)

Question:4(iii) Factorise x ^4 - ( y + z )^4

Answer:

We have,
x ^4 - ( y + z )^4 =

(using \ a^{2} -b^{2} = (a-b)(a+b))

Question:4(iv) Factorise x ^ 4 - ( x-z ) ^ 4

Answer:

We have,
x ^ 4 - ( x-z ) ^ 4 = (x^{2})^{2} - ((x-z)^{2})^{2}using \ a^{2}-b^{2} = (a-b)(a+b)
(x^{2} - (x-z)^{2})(x^{2}+(x-z)^{2})
(x+(x-z))(x - (x-z))(x^{2}+(x-z)^{2})
(2x - z)(z)(x^{2}+(x-z)^{2})

Question:4(v) Factorise a ^ 4 - 2 a^2 b^2 + b ^ 4

Answer:

We have,
a ^ 4 - 2 a^2 b^2 + b ^ 4 = a^{4} - a^{2}b^{2} - a^{2}b^{2} + b^{4}
a^{2}(a^{2} - b^{2}) - b^{2}(a^{2} - b^{2})
(a^{2} - b^{2}) (a^{2}-b^{2})using \ a^{2}-b^{2} = (a-b)(a+b)
(a^{2} - b^{2})^{2}
((a - b)(a+b))^{2}
(a - b)^{2}(a+b)^{2}

Question:5(i) Factorise the following expression

p^ 2 + 6 p + 8

Answer:

We have,
p^ 2 + 6 p + 8 = p^{2} + 2p + 4p + 8
= p(p + 2) + 4(p + 2)
=(p + 2)(p + 4)
Therefore,
p^ 2 + 6 p + 8=(p + 2)(p + 4)

Question:5(ii) Factorise the following expression

q ^ 2 - 10 q + 21

Answer:

We have,
q ^ 2 - 10 q + 21 = q^{2} - 7q -3q + 21
= q(q - 7) -3(q - 7)
=(q - 7)(q - 3)
Therefore,
q ^ 2 - 10 q + 21=(q - 7)(q - 3)

Question:5(iii) Factorise the following expression

p^2 + 6 p - 16

Answer:

We have,
p^2 + 6 p - 16 = p^{2} + 8p - 2p - 16
= p(p + 8) -2(p + 8)
=(p - 2)(p + 8)
Therefore,
p^2 + 6 p - 16=(p - 2)(p + 8)

NCERT solutions for class 8 maths chapter 14 factorization topic 14.3.1 division of a monomial by another monomial

Question:(i) Divide 24 xy^2 z^3 \: \: by \: \: 6 yz^2

Answer:

We have,

Question:(ii) Divide 63 a ^ 2 b^ 4 c ^6 \: \: by \: \: 7 a ^2 b^ 2 c ^3

Answer:

We have,

NCERT solutions for class 8 maths chapter 14 factorization-Exercise: 14.3

Question:1(i) Carry out the following divisions

28 x ^ 4 \div 56 x

Answer:

This is done using factorization.

Question:1(ii) Carry out the following divisions

-36 y^3 \div 9 y^2

Answer:

We have,
-36y^{3}= -1 \times 2 \times 2 \times 3 \times 3 \times y \times y \times y
9y^{2 }= 3 \times 3 \times y \times y
Therefore,

Question:1(iii) Carry out the following divisions

66 pq^2 r ^ 3 \div 11 q r ^2

Answer:

We have,
66pq^2r^3 = 2 \times 3 \times 11 \times p \times q \times q \times r \times r \times r
11qr^2 = 11 \times q \times r \times r
Therefore,

Question:1(iv) Carry out the following divisions

34 x^ 3 y^3 z ^ 3 \div 51 x y^2 z ^ 3

Answer:

We have,


Question:1(v) Carry out the following divisions

12 a ^ 8 b^ 8 \div ( -6 a ^ 6 b ^ 4 )

Answer:

We have,


Question:2(i) Divide the given polynomial by the given monomial

( 5x ^2 -6x ) \div 3x

Answer:

We have,
5x^2 - 6x = x(5x - 6)

\therefore \frac{5x^{2}-6}{3x} = \frac{x(5x-6)}{3x} = \frac{5x-6}{3}

Question:2(ii) Divide the given polynomial by the given monomial

( 3 y ^8 - 4 y^6 + 5 y ^4 )\div y ^ 4

Answer:

We have,
3y^{8} - 4y^{6} + 5y^{4} = y^{4}(3y^{4}-4y^{2} + 5)
\therefore \frac{y^{4}(3y^{4}-4y^{2}+5)}{y^{4}} = (3y^{4}-4y^{2}+5)

Question:2(iii) Divide the given polynomial by the given monomial

8 ( x ^3 y^2 z ^2 + x^2 y^3 z^2 + x ^2 y^2 z^3 ) \div 4 x ^2 y ^2 z ^2

Answer:

We have,
8(x^{3}y^{2}z^{2} + x^{2}y^{3}z^{2} + x^{2} y^{2}z^{3}) = 8x^{2}y^{2}z^{2}(x+y+z)

Question:2(iv) Divide the given polynomial by the given monomial

( x^3 +2 x ^2 + 3 x ) \div 2x

Answer:

We have,
x^{3} + 2x^{2} + 3x = x(x^{2} + 2x + 3)

\therefore \frac{x^{3} + 2x^{2} + 3x}{2x} = \frac{x(x^{2} + 2x + 3)}{2x} = \frac{x^{2} + 2x + 3}{2}

Question:2(v) Divide the given polynomial by the given monomial

( p ^ 3 q ^6 - p ^ 6 q ^ 3 ) \div p ^3 q ^3

Answer:

We have,
(p^{3}q^{6} - p^{6}q^{3}) = p^{3}q^{3}(q^{3} - p^{3})

Question:3(i) workout the following divisions

( 10 x - 25) \div 5

Answer:

We have,
10x -25 = 5(2x - 5)
Therefore,
\frac{10x-25}{5}= \frac{5(2x-5)}{5} = 2x - 5

Question:3(ii) workout the following divisions

( 10 x -25 ) \div ( 2x -5 )

Answer:

We have,
10x-25 = 5(2x - 5 )
Therefore,
\frac{10x-25}{2x-5} = \frac{5(2x-5)}{2x-5} = 5

Question:3(iii) workout the following divisions

10 y ( 6y +21 ) \div 5 ( 2y + 7 )

Answer:

We have,
10y(6y + 21) = 2 \times y \times 5 \times 3(2y + 7)
Therefore,
\frac{10y(6y+21)}{5(2y+7)} = \frac{2 \times 5 \times y \times 3(2y+7)}{5(2y+7)} = 6y

Question:3(iv) workout the following divisions

9 x ^2 y^2 ( 3z -24 ) \div 27 xy ( z-8 )

Answer:

We have,
9x^{2}y^{2}(3z-24) = 9x^{2}y^{2} \times 3(z-8) = 27x^{2}y^{2}(z-8)

\therefore \frac{9x^{2}y^{2}(3z-24)}{27xy(z-8)} = \frac{27x^{2}y^{2}(z-8)}{27xy(z-8)} = xy

Question:3(v) workout the following divisions

96 abc ( 3a -12 ) ( 5 b -30 ) \div 144 (a-4 ) ( b- 6 )

Answer:

We have,
96abc(3a - 12)(5b - 30) = 2 \times 48abc \times 3(a - 4) \times 5(b - 6)
= 2 \times144abc (a - 4) \times 5(b - 6)
Therefore,
\frac{96abc(3a-12)(5b-30)}{144(a-4)(b-6)} = \frac{2 \times 144abc (a-4) \times 5 (b - 6)}{144(a-4)(b-6)} = 10abc

Question:4(i) Divide as directed

5 ( 2x +1 ) ( 3x +5 ) \div ( 2x +1)

Answer:

We have,
\frac{5(2x+1)(3x+5)}{2x+1} = 5(3x+5)

Question:4(ii) Divide as directed

26 xy ( x+5 ) ( y-4) \div 13 x ( y-4 )

Answer:

We have,
\frac{26xy(x+5)(y-4)}{13x(y-4)} = \frac{2 \times 13xy(x+5)(y-4)}{13x(y-4)} =2y(x+5)

Question:4(iii) Divide as directed

52 pqr ( p+ q ) ( q+ r ) ( r +p)\div 104 pq ( q+r ) ( r + p )

Answer:

We have,
\frac{52pqr(p+q)(q+r)(r+p)}{104pq(q+r)(r+p)} = \frac{r(p+q)}{2}

Question:4(iv) Divide as directed

20 ( y+4 ) ( y^2 + 5 y + 3 ) \div 5 (y +4 )

Answer:

We have,
<img alt="\frac{20(y+4)(y^{2}+5y+3)}{5(y+4)} =\frac{4 \times 5(y+4)(y^{2}+5y+3)}{5(y+4)} = 4(y^{2}+5y+3)" height="45"

src="https://lh3.googleusercontent.com/6jW1aaLNwyoTuh1901YS6K6Hv_aPJu4YZ2snlO0SrUve-9wb0rxwp17UX5azraQ4pJ_bhX88fLW92gEqVJ4WGKjWBHgiNUceKd2V9UICUxQxG51ULfWUTCbMe-db0W86iZHRwtI" style="margin-left: 0px; margin-top: 0px;" width="534" />

Question:4(v) Divide as directed

x ( x+1 ) ( x+2 ) ( x+3 ) \div x ( x+1 )

Answer:

We have,
\frac{x(x+1)(x+2)(x+3)}{x(x+1)} = (x+2)(x+3)

Question:5(i) Factorise the expression and divide then as directed

( y ^ 2 + 7 y + 1 0 ) \div ( y + 5 )

Answer:

We have,

Question:5(ii) Factorise the expression and divide then as directed

( m^2 - 14 m -32 ) \div ( m +2 )

Answer:

We have,

Question:5(iii) Factorise the expression and divide then as directed

( 5 p^2 -25p + 20 ) \div ( p-1 )

Answer:

We have,

Question:5(iv) Factorise the expression and divide then as directed

4 yz ( z^2 + 6z -16 ) \div 2y ( z+8 )

Answer:

We first simplify our numerator
So,
4yz( z^2+ 6z - 16)
Add and subtract 64 \Rightarrow4yz( z^2- 64 + 6z - 16 + 64)
= 4yz(z^2-8^2 + 6z + 48)
= 4yz((z + 8)(z - 8) + 6(z + 8))using \ a^{2} -b^{2} = (a - b)(a + b)
= 4yz (z + 8)(z - 8 + 6)
= 4yz(z + 8)(z - 2)
Now,
\frac{4yz(z^{2}+6z-16)}{2y(z+8)} = \frac{4yz(z+8)(z-2)}{2y(z+8)}= 2z(z-2)

Question:5(v) Factorise the expression and divide then as directed

5 pq ( p^2 - q ^ 2 ) \div 2 p ( p + q )

Answer:

We have,

Question:5(vi) Factorise the expression and divide then as directed

12 xy ( 9 x^2 - 16 y^2 ) \div 4 xy ( 3 x + 4 y )

Answer:

We first simplify our numerator,
12xy ( 9x^{2} -16y^{2} ) = 12xy(3x)^{2} -(4y)^{2}

using (a)^{2} -(b)^{2} = (a-b)(a+b)
= 12xy((3x - 4y)(3x + 4y))
Now,
\frac{12xy(9x^{2} - 16y^{2})}{4xy(3x + 4y)} = \frac{12xy(3x+4y)(3x-4y)}{4xy(3x+4y)} = 3(3x-4y)

Question:5(vii) Factorise the expression and divide then as directed

39 y^2 ( 50 y^2 - 98 ) \div 26 y^2 ( 5y +7 )

Answer:

We first simplify our numerator,
39y^{2}(50y^{2} -98) = 39y^{2} \times 2(25y^{2} - 49) using (a)^{2} -(b)^{2} = (a-b)(a+b)
78y^{2} ((5y)^{2} - (7)^{2})
78y^{2} (5y - 7)(5y+7)
Now,
\frac{39y^{2}(50y^{2}-98)}{26y^{2}(5y +7)} = \frac{78y^{2}(5y-7)(5y+7)}{26y^{2}(5y+7)} = 3(5y-7)

NCERT solutions for class 8 maths chapter 14 factorization-Exercise: 14.4

Question:1 Find and correct the errors in the following mathematical statements

4 ( x-5 ) = 4 x - 5

Answer:

Our L.H.S.
= 4(x - 5) = 4x - 20
R.H.S. = 4x -5
It is clear from the above that L.H.S. is not equal to R.H.S.
So, correct statement is
4(x - 5) = 4x - 20

Question:2 Find and correct the errors in the following mathematical statements

x ( 3 x + 2 ) = 3 x^2 +2

Answer:

Our L.H.S.
= x(3x + 2) = 3x^2 + 2x
R.H.S.= 3x^2 + 2
It is clear from the above that L.H.S. is not equal to R.H.S.
So, correct statement is
= x(3x + 2) = 3x^2 + 2x

Question:3 Find and correct the errors in the following mathematical statements

2 x + 3y = 5 xy

Answer:

Our L.H.S. = 2x + 3y
R.H.S. = 5xy
It is clear from the above that L.H.S. is not equal to R.H.S.
SO, correct statement is
2x + 3y = 2x + 3y

Question:4 Find and correct the errors in the following mathematical statements

x + 2x + 3x = 5x

Answer:

Our L.H.S. = x + 2x + 3x = 6x
R.H.S. = 5x
It is clear from the above that L.H.S. is not equal to R.H.S.
So, correct statement is
x + 2x + 3x = 6x

Question:5 Find and correct the errors in the following mathematical statements

(Q5)\ 5 y + 2y + y - 7y = 0

Answer:

Our L.H.S. is
5y + 2y + y - 7y = y
R.H.S. = 0
IT is clear from the above that L.H.S. is not equal to R.H.S.
So, Correct statement is
5y + 2y + y - 7y = y

Question:6 Find and correct the errors in the following mathematical statements

3 x +2 x = 5 x ^2

Answer:

Our L.H.S. is
3x + 2x = 5x
R.H.S. = 5x^2
It is clear from the above that L.H.S. is not equal to R.H.S.
So, correct statement is
3x + 2x = 5x

Question:7 Find and correct the errors in the following mathematical statements

( 2x )^2 + 4 ( 2x ) + 7 = 2 x^2 + 8 x +7

Answer:

Our L.H.S. is
(2x)^2 + 4(2x) + 7 = 4x^2 + 8x + 7
R.H.S. = 2x^2+8x+7
It is clear from the above that L.H.S. is not equal to R.H.S.
So, correct statement is
(2x)^2 + 4(2x) + 7 = 4x^2 + 8x + 7

Question:8 Find and correct the errors in the following mathematical statements

( 2 x)^2 + 5 x = 4 x +5x = 9 x

Answer:

Our L.H.S. is
\Rightarrow (2x)^{2}+5x = 4x^2+5x
R.H.S. = 9x
It is clear from the above that L.H.S. is not equal to R.H.S.
So, the correct statement is
(2x)^{2}+5x = 4x^2+5x

Question:9 Find and correct the errors in the following mathematical statements

( 3x +2 )^2 = 3 x ^2 + 6x + 4

Answer:

LHS IS

(3x + 2)^{2 } = (3x)^{2} + 2(3x)(2) +(2)^{2} using (a + b)^{2 } = (a)^{2} + 2(a)(b) +(b)^{2}
= 9x^2 + 12x + 4

RHS IS

3 x ^2 + 6x + 4

\boldsymbol{LHS} \neq \boldsymbol{RHS}

Correct statement is

(3x + 2)^{2 } = (3x)^{2} + 2(3x)(2) +(2)^{2}= 9x^2 + 12x + 4

Question:10(a) Find and correct the errors in the following mathematical statements

Substituting x = -3 in x ^ 2 + 5 x + 4 \: \: gives \: \: ( -3 ) ^ 2 + 5 ( -3 ) + 4 = 9 + 2 + 4 = 15

Answer:

We need to substitute x = -3 in

x^{2}+5x+4
=(-3)^{2}+5(-3)+4
= 9 - 15 + 4
= -2 \neq 15

so the given statement is wrong
Correct statement is (-3)^{2}+5(-3)+4= -2

Question:10(b) find and correct the errors in the following mathematical statements

Substituiting x = -3 in x ^2 -5 x + 4 \: \: gives \: \: ( -3)^2 - 5 ( -3 ) + 4 = 9 - 15 + 4 = -2

Answer:

We need to substitute x = -3 in x^2 - 5x + 4
= (-3)^2-5(-3) + 4
= 9 + 15 + 4=28
so the given statement is wrong
Correct statement is

x^2 - 5x + 4=28

Question:10(c) find and correct the errors in the following mathematical statements

Substituting x = - 3 in x ^2 + 5 x \: \: gives \: \: ( -3 ) ^ 2 + 5 ( -3 ) = -9-15 = -24

Answer:

We need to Substitute x = - 3 in x^{2} + 5x
(-3)^{2} + 5(-3)
= 9 - 15
= - 6 \neq R.H.S
Correct statement is Substitute x = - 3 in x^{2} + 5x gives -6

Question:11 Find and correct the errors in the following mathematical statements

( y - 3 ) ^ 2 = y ^ 2 -9

Answer:

Our L.H.S. is (y - 3 )^{2}
(y )^{2} + 2(y)(-3) + (-3)^{2} using (a-b)^{2} = (a )^{2} + 2(a)(-b) + (-b)^{2}
y^{2}- 6x + 9\neq R.H.S.

Correct statement is

(y - 3 )^{2} = y^{2}- 6x + 9

Question:12 Find and correct the errors in the following mathematical statements

( z+5 ) ^2 = z^2 + 25

Answer:

Our L.H.S. is (z+5)^{2}
(z)^{2} + 2(z)(5) + (5)^{2} using (a+b)^{2} = (a)^{2} + 2(a)(b) + (b)^{2}
(z)^{2}+ 10z + 25\neq R.H.S.
Correct statement is

(z+5)^{2} = (z)^{2}+ 10z + 25

Question:13 Find and correct the errors in the following mathematical statements.

( 2a +3b ) ( a-b) = 2 a ^2 - 3 b^2

Answer:

Our L.H.S. is (2a + 3b)(a -b)
2a^{2} -2ab + 3ab - 3b^{2}
2a^{2} +ab - 3b^{2}\neq R.H.S.
Correct statement is (2a + 3b)(a -b) = 2a^{2} +ab - 3b^{2}

Question:14 Find and correct the errors in the following mathematical statements.

( a + 4 ) ( a +2 ) = a ^ 2 + 8

Answer:

Oue L.H.S. is (a + 4)(a + 2)
a^{2} + 2a + 4a + 8
a^{2} + 6a + 8\neq R.H.S.
Correct statement is (a + 4)(a + 2) = a^{2} + 6a + 8

Question:15 Find and correct the errors in the following mathematical statements.

(a - 4 ) ( a - 2 )= a ^2 - 8

Answer:

Our L.H.S. is (a - 2) (a - 4)
a^{2} - 4a - 2a + 8
a^{2} - 6a+ 8\neq R.H.S.
Correct statement is (a - 2) (a - 4) = a^{2} - 6a+ 8

Question:16 Find and correct the errors in the following mathematical statements.

\frac{3 x ^2}{3 x ^2 } = 0

Answer:

Our L.H.S. is
\Rightarrow \frac{3x^{2}}{3x^{2}}
R.H.S. = 0
It is clear from the above that L.H.S. is not equal to R.H.S.
So, correct statement is
\frac{3x^{2}}{3x^{2}} = 1

Question:17 Find and correct the errors in the following mathematical statements.

\frac{3 x ^2 + 1 }{3 x ^2 } = 1+1 = 2

Answer:

Our L.H.S. is
\Rightarrow \frac{3x^2+1}{3x^2}
R.H.S. = 2
It is clear from the above stattement that L.H.S. is not equal to R.H.S.
So, correct statement is
\frac{3x^{2}+1}{3x^{2}} = 1 + \frac{1}{3x^{2}} = \frac{3x^{2}+1}{3x^{2}}

Question:18 find and correct the errors in the following mathematical statements.

\frac{3 x }{3 x +2 } = 1/2

Answer:

Our L.H.S.

\Rightarrow \frac{3x}{3x+2}

R.H.S. = 1/2

It can be clearly observed that L.H.S is not equal to R.H.S

So, the correct statement is,

\frac{3x}{3x+2} = \frac{3x}{3x+2}

Question:19 find and correct the errors in the following mathematical statements

\frac{3}{4x +3}= \frac{1}{4x }

Answer:

Our L.H.S. is \Rightarrow \frac{3}{4x+3} = \frac{3}{4x+3} \neq R.H.S.

Correct statement is \frac{3}{4x+3} = \frac{3}{4x+3}

Question:20 find and correct the errors in the following mathematical statements

\frac{4 x + 5 }{4x } = 5

Answer:

Our L.H.S. is \Rightarrow \frac{4x+5}{4x} = \frac{4x}{4x} + \frac{5}{4x} = 1 + \frac{5}{4x} \neq R.H.S.

Correct statement is \frac{4x+5}{4x} = 1 + \frac{5}{4x} = \frac{4x+5}{4x}

Question:21 find and correct the errors in the following mathematical statements

\frac{7x +5}{5} = 7x

Answer:

Our L.H.S. is \Rightarrow \frac{7x+5}{5} = \frac{7x}{5} + \frac{5}{5} = \frac{7x}{5} + 1 \neq R.H.S.

Correct statement is \frac{7x+5}{5} = \frac{7x}{5} + 1 = \frac{7x+5}{5}

NCERT Class 8 Mathematics Solutions

Chapter 01 - Rational Numbers

Chapter 02 - Linear Equations in One Variable

Chapter 03 -Understanding Quadrilaterals

Chapter 04 - Practical Geometry

Chapter 05 - Data Handling

Chapter 06 - Squares and Square Roots

Chapter 07 - Cubes and Cube Roots

Chapter 08 - Comparing Quantities

Chapter 09 - Algebraic Expressions and Identities

Chapter 10 - Visualising Solid Shapes

Chapter 11 - Mensuration

Chapter 12 - Exponents and Powers

Chapter 13 - Direct and Indirect proportions

Chapter 14 - Factorisation

Chapter 15 - Introduction to Graphs

Chapter 16 - Playing with Numbers

Want to know more

Please fill in the details below:

INNER POST ADS

Latest IITJEE Articles$type=three$c=3$author=hide$comment=hide$rm=hide$date=hide$snippet=hide

Latest NEET Articles$type=three$c=3$author=hide$comment=hide$rm=hide$date=hide$snippet=hide

Name

Admissions,1,Alternating Current,60,AP EAMCET 2020,1,Basic Maths,2,BCECE 2020,1,best books for iit jee,2,best coaching institute for iit,1,best coaching institute for iit jee preparation,1,best iit jee coaching delhi,1,best iit jee coaching in delhi,2,best study material for iit jee,4,BITSAT Registration 2020,1,Blog,62,books for jee preparation,1,books recommended by iit toppers,3,Capacitance,3,CBSE,1,CBSE accounts exam,1,CBSE boards,1,CBSE NEET,9,cbse neet 2019,3,CBSE NEET 2020,1,cbse neet nic,1,Centre of Mass,2,Chemistry,58,Class 12 Physics,15,coaching for jee advanced,1,coaching institute for iit jee,2,Collision,2,COMEDK UGET 2020 Application Form,1,COMEDK UGET 2020 Exam Form,1,COMEDK UGET news,1,CUCET 2020,2,Current Electricity,4,CVR college,1,Digestion and Absorption Notes PDF,1,Electromagnetic Induction,3,Electronics,1,Electrostatics,3,Energy,1,Engineering & Medical,1,Fluid Mechanics,4,Gravitation,2,GUJCET 2020 Application Form,1,Heat,4,iit admission,1,iit advanced,1,iit coaching centre,3,iit coaching centre in delhi,2,iit coaching classes,2,iit coaching in delhi,1,iit coaching institute in delhi,1,iit entrance exam,1,iit entrance exam syllabus,2,iit exam pattern,2,iit jee,5,iit jee 2019,3,iit jee advanced,2,iit jee books,3,iit jee coaching,2,iit jee exam,3,iit jee exam 2019,1,iit jee exam pattern,3,iit jee institute,1,iit jee main 2019,2,iit jee mains,3,iit jee mains syllabus,2,iit jee material,1,iit jee online test,3,iit jee practice test,3,iit jee preparation,6,iit jee preparation in delhi,2,iit jee preparation time,1,iit jee preparation tips by toppers,2,iit jee question paper,1,iit jee study material,3,iit jee study materials,2,iit jee syllabus,2,iit jee syllabus 2019,2,iit jee test,3,iit preparation,2,iit preparation books,5,iit preparation time table,2,iit preparation tips,2,iit syllabus,2,iit test series,3,IITJEE,100,Important Biology Notes for NEET Preparation,1,IPU CET,1,JEE Advanced,83,jee advanced exam,2,jee advanced exam pattern,1,jee advanced paper,1,JEE Books,1,JEE Coaching Delhi,3,jee exam,3,jee exam 2019,6,JEE Exam Pattern,2,jee exam pattern 2019,1,jee exam preparation,1,JEE Main,85,jee main 2019,4,JEE Main 2020,1,JEE Main 2020 Application Form,2,JEE Main 2020 news,2,JEE Main 2020 Official Answer Key,1,JEE Main 2020 Registration,1,JEE Main 2020 Score,1,JEE Main application form,1,jee main coaching,1,JEE Main eligibility criteria,3,jee main exam,1,jee main exam 2019,3,jee main online question paper,1,jee main online test,3,JEE Main Paper-2 Result,1,jee main registration,2,jee main syllabus,2,JEE mains 2020,1,jee mains question bank,1,jee mains test papers,3,JEE Mock Test,2,jee notes,1,jee past papers,1,JEE Preparation,2,jee preparation in delhi,1,jee preparation material,4,JEE Study Material,1,jee syllabus,6,JEE Syllabus Chemistry,1,JEE Syllabus Maths,1,JEE Syllabus Physics,1,jee test series,3,KCET - 2020,1,Kinematics,1,Latest article,5,Latest Articles,61,Latest News,34,latest news about neet exam,1,Laws of Motion,2,Magnetic Effect of Current,3,Magnetism,3,MHT CET 2020,2,MHT CET 2020 exam schedule,1,Modern Physics,1,NCERT Solutions,15,neet,3,neet 2019,1,neet 2019 eligibility criteria,1,neet 2019 exam date,2,neet 2019 test series,2,NEET 2020,2,NEET 2020 Application Form,1,NEET 2020 Eligibility Criteria,1,NEET 2020 Registration,1,neet application form,1,neet application form 2019 last date,1,Neet Biology Syllabus,1,Neet Books,3,neet eligibility criteria,3,neet exam 2019,7,neet exam application,1,neet exam date,1,neet exam details,1,neet exam pattern,6,neet exam pattern 2019,2,neet examination,1,neet mock test 2019,1,Neet Notes,3,Neet Online Application Form,3,neet online test,2,neet past papers,1,neet physics syllabus,1,neet practice test,2,NEET preparation books,1,neet qualification marks,1,NEET question paper 2019,1,neet question papers,1,neet registration,1,Neet Study Material,3,neet syllabus,6,neet syllabus 2019,5,NEET Syllabus 2020,1,neet syllabus chemistry,1,neet syllabus for biology,1,neet syllabus for physics,1,neet test series,1,neet ug 2019,2,news,5,online study material for iit jee,1,Optical Instruments,1,Physics,110,physics books for iit jee,1,Power,1,Practical Physics,1,Quiz,5,Ray Optics,1,Rotational Motion,3,SHM,3,Simple Harmonic Motion,3,study materials for iit jee,1,Study Notes,110,study notes for iit jee,1,Thermodynamics,4,TS EAMCET Notification,2,Units and Dimensions,1,UPSEE 2020,1,UPSEE 2020 Application Form,2,UPSEE EXAM,1,Vectors,2,VITEE Application form,1,Wave Motion,3,Wave Optics,1,WBJEE 2020 Admit Card,1,WBJEE 2020 Answer Key,1,Work,1,
ltr
static_page
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET & IIT JEE COACHING: ncert-solutions-class-8-maths-ch-14-factorisation
ncert-solutions-class-8-maths-ch-14-factorisation
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET & IIT JEE COACHING
https://www.cleariitmedical.com/p/ncert-solutions-class-8-maths-ch-14.html
https://www.cleariitmedical.com/
https://www.cleariitmedical.com/
https://www.cleariitmedical.com/p/ncert-solutions-class-8-maths-ch-14.html
true
7783647550433378923
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy

STAY CONNECTED