9394949438

[LATEST]$type=sticky$show=home$rm=0$va=0$count=4$va=0

NCERT solutions for Class 8 Maths Chapter 16 Playing with Numbers

NCERT solutions for class 8 maths chapter 16 playing with numbers topic 16.2 numbers in general form

Question: 1(i) Write the following numbers in generalised form.

25

Answer:

any two digit number ab made of digits a and b can be written as ab = 10 × a + b = 10a + b

hence,

25 = 10*2 + 5 = 20 + 5

Question: 1(ii) Write the following numbers in generalised form.

73

Answer:

any two digit number ab made of digits a and b can be written as ab = 10 × a + b = 10a + b

hence generalized form of the number

73 = 10*7 + 3

Question:1(iii) Write the following numbers in generalised form.

129

Answer:

A 3 digit number madeup of digits a, b, c will be written as,

abc = 100 × a + 10 × b + 1 × c = 100a + 10b + c

hence generalised form of number

129 = 100*1 + 10*2 + 1*9

Question: 1(iv) Write the following numbers in generalised form.

302

Answer:

A 3-digit number abc made up of digits a, b and c is written as abc = 100 × a + 10 × b + 1 × c = 100a + 10b + c

hence generalised form of

302 = 100*3 + 10*0 + 1*2

Question:2(i) Write the following in the usual form.

10\times 5 + 6

Answer:

As we know ab = 10 × a + b = 10a + b

usual form of number

10*5 + 6 = 50 + 6 = 56

Question: 2(ii) Write the following in the usual form.

100\times 7 + 10\times 1 + 8

Answer:

As we know abc = 100 × a + 10 × b + 1 × c

the usual form of number

100*7 + 10*1 + 8 = 700 + 10 + 8 = 718.

Question:2(iii) Write the following in the usual form.

100\times a + 10\times c + b

Answer:

As we know abc = 100 × a + 10 × b + 1 × c

casual form of 100 × a + 10 × b + 1 × c = abc.

NCERT solutions for class 8 maths chapter 16 playing with numbers topic 16.3 games with numbers

Question:1 Check what the result would have been if Sundaram had chosen the numbers shown below.

27

Answer:

As we know

(10a + b) + (10b + a) = 11a + 11b = 11 (a + b)

here a = 2 and b = 7

27 + 72 = 99= 11 *9 = a multiple of 11

Question:2 Check what the result would have been if Sundaram had chosen the numbers shown below.

39

Answer:

39 + 93 = 133 = 11*12 = a multiple of 11

this can be explained by

(10a + b) + (10b + a) = 11a + 11b = 11 (a + b)

Here a = 3 and b = 9

Question:3 Check what the result would have been if Sundaram had chosen the numbers shown below.

64

Answer:

64 + 46 = 110 = 11*10= a multiple of 11

this can be explained by

(10a + b) + (10b + a) = 11a + 11b = 11 (a + b)

here a = 6 and b = 4

Question:4 Check what the result would have been if Sundaram had chosen the numbers shown below.

17

Answer:

17 + 71 = 88 = 11*8 = a multiple of 11

this can be explained by

(10a + b) + (10b + a) = 11a + 11b = 11 (a + b)

here a = 1 and b = 7

NCERT solutions for class 8 maths chapter 16 playing with numbers topic 16.3 games with numbers

Question:1 Check what the result would have been if Sundaram had chosen the numbers shown below.

17

Answer:

If the tens digit is larger than the ones digit (that is, a > b), then
(10a + b) – (10b + a) = 10a + b – 10b – a
= 9a – 9b = 9(a – b).
If the unit digit is larger than the tens digit (that is, b > a), he does:
(10b + a) – (10a + b) = 9(b – a).

here a = 1 and b = 7

71 - 17 = 54 = 9*6 = multiple of 9

Question:2 Check what the result would have been if Sundaram had chosen the numbers shown below.

21

Answer:

If the tens digit is larger than the ones digit (that is, a > b), then
(10a + b) – (10b + a) = 10a + b – 10b – a
= 9a – 9b = 9(a – b).
If the unit digit is larger than the tens digit (that is, b > a), he does:
(10b + a) – (10a + b) = 9(b – a).

here a = 2 and b = 1

21 - 12 = 9 = 9*1 = multiple of 9

Question:3 Check what the result would have been if Sundaram had chosen the numbers shown below.

96

Answer:

If the tens digit is larger than the ones digit (that is, a > b), then
(10a + b) – (10b + a) = 10a + b – 10b – a
= 9a – 9b = 9(a – b).
If the unit digit is larger than the tens digit (that is, b > a), he does:
(10b + a) – (10a + b) = 9(b – a).

here a = 9 and b = 6

96 - 69 = 27= 9*3= multiple of 9

Question:4 Check what the result would have been if Sundaram had chosen the numbers shown below.

37

Answer:

If the tens digit is larger than the ones digit (that is, a > b), then
(10a + b) – (10b + a) = 10a + b – 10b – a
= 9a – 9b = 9(a – b).
If the unit digit is larger than the tens digit (that is, b > a), he does:
(10b + a) – (10a + b) = 9(b – a).

here a = 3 and b = 7

73 - 37 = 36 = 9*4 = multiple of 9

NCERT solutions for class 8 maths chapter 16 playing with numbers topic 16.3 games with numbers

Question:1 Check what the result would have been if Minakshi had chosen the numbers shown below. In each case keep a record of the quotient obtained at the end.

132

Answer:

Let's assume the 3-digit number chosen by Minakshi = 100a + 10b + c.

After reversing the order of the digits, number = 100c + 10b + a.

On subtraction:

• If a > c, then the difference between the original number & reversed number

(100a + 10b + c) – (100c + 10b + a) = 100a + 10b + c – 100c – 10b – a = 99a – 99c = 99(a – c).

• If c > a, then the difference between the numbers is (100c + 10b + a) – (100a + 10b + c) = 99c – 99a = 99(c – a).

• If a & c are equal,then the difference is 0.

here a = 1, b = 3 and c = 2

231 - 132 = 99 = multiple of 99

Question:2 Check what the result would have been if Minakshi had chosen the numbers shown below. In each case keep a record of the quotient obtained at the end.

469

Answer:

Let the 3-digit number chosen by Minakshi = 100a + 10b + c.

After reversing the order of the digits, number = 100c + 10b + a.

On subtraction:

• If a > c, then the difference between the original numbedr & reversed numbers is

(100a + 10b + c) – (100c + 10b + a) = 100a + 10b + c – 100c – 10b – a = 99a – 99c = 99(a – c).

• If c > a, then the difference between the numbers is (100c + 10b + a) – (100a + 10b + c) = 99c – 99a = 99(c – a).

• if a & c are equal, then the difference is 0.

here a,b and c are 4, 6 & 9 respectively.

964 - 469 = 495 = 99*5 = multiple of 99

Question:3 Check what the result would have been if Minakshi had chosen the numbers shown below. In each case keep a record of the quotient obtained at the end.

737

Answer:

Let the 3-digit number chosen by Minakshi = 100a + 10b + c.

After reversing the order of the digits, number = 100c + 10b + a.

On subtraction:

• If a > c, then the difference between the original number & reversed number is

(100a + 10b + c) – (100c + 10b + a) = 100a + 10b + c – 100c – 10b – a = 99a – 99c = 99(a – c).

• If c > a, then the difference between the numbers is (100c + 10b + a) – (100a + 10b + c) = 99c – 99a = 99(c – a).

• If A 7 C are equal, the difference is 0.

here a = 7, b = 3 and c = 7

737- 737 = 0= multiple of 99

Question:4 Check what the result would have been if Minakshi had chosen the numbers shown below. In each case keep a record of the quotient obtained at the end.

901

Answer:

Let the 3-digit number chosen by Minakshi = 100a + 10b + c.

After reversing the order of the digits, number = 100c + 10b + a.

On subtraction:

• If a > c, then the difference between the original number & reversed number is

(100a + 10b + c) – (100c + 10b + a) = 100a + 10b + c – 100c – 10b – a = 99a – 99c = 99(a – c).

• If c > a, then the difference between the numbers is (100c + 10b + a) – (100a + 10b + c) = 99c – 99a = 99(c – a).

• If a & c are equal, the difference is 0.

here a = 9, b = 0 and c = 1

901- 109= 792= 99*8 = multiple of 99

quotient in each case = c - a.

NCERT solutions for class 8 maths chapter 16 playing with numbers topic 16.3 games with numbers

Question:1 Check what the result would have been if Sundaram had chosen the numbers shown below.

417

Answer:

Let choosen number be abc then,

abc = 100a + 10b + c

cab = 100c + 10a + b

bca = 100b + 10c + a

After adding all the above three, abc + cab + bca = 111(a + b + c) = 37 × 3(a + b + c),

It will be divisible by 37 becuase 37 is present in the equation.

here a = 4, b = 1, and c = 7

417 + 741 + 147 = 1332 = 37*36 i.e. divisible by 37.

Question:2 Check what the result would have been if Sundaram had chosen the numbers shown below.

632

Answer:

Let choosen number be abc then,

abc = 100a + 10b + c

cab = 100c + 10a + b

bca = 100b + 10c + a

The addition of all the above three, abc + cab + bca = 111(a + b + c) = 37 × 3(a + b + c), which is divisible by 37

here a = 6, b = 3, and c = 2

632+ 263+ 362= 1221= 37*33 i.e. divisible by 37.

Question:3 Check what the result would have been if Sundaram had chosen the numbers shown below.

117

Answer:

Let choosen number be abc then,

abc = 100a + 10b + c

cab = 100c + 10a + b

bca = 100b + 10c + a

The addition of the above all three, abc + cab + bca = 111(a + b + c) = 37 × 3(a + b + c), which is divisible by 37

here a = 1, b = 1, and c = 7

117 + 711 + 117 = 999 = 37*27 i.e. divisible by 37.

Question:4 Check what the result would have been if Sundaram had chosen the numbers shown below.

937

Answer:

Let choosen number be abc then,

abc = 100a + 10b + c

cab = 100c + 10a + b

bca = 100b + 10c + a

The addition of all above three, abc + cab + bca = 111(a + b + c) = 37 × 3(a + b + c), which is divisible by 37

here a = 9, b = 3, and c = 7

937 + 793 + 397 = 2109 = 37*57 i.e. divisible by 37.

NCERT solutions for class 8 maths chapter 16 playing with numbers-Exercise: 16.1

Question:1 Find the values of the letters in each of the following and give reasons for the steps involved.

Answer:

Here we are adding two numbers and unit place of the first number and the second number is A and 5 respectively. unit place of the answer is 2 so the way we can get this result is when we get 12 on adding unit places of both number i.e.

A + 5 = 12

which implies A = 12 - 5 = 7.

Ten's digit of both numbers are 3 and 2.remainder=1

so ten's digit of the answer(B) = 3 + 2 + 1 = 6

Hence A= 7 and B = 6.

Question:2 Find the values of the letters in each of the following and give reasons for the steps involved.

Answer:

Here

answer's unit place = 3 , possible addition of unit places digit = 13

A + 8 = 13

A = 13 - 8 = 5

remainder = 1

Ten's place of answer = 4 + 9 + 1 = 14

B = 4

remainder = 1

100's place = C = 1

Hence value of A = 5 , B = 4 and C = 1.

Question:3 Find the values of the letters in each of the following and give reasons for the steps involved.

Answer:

Here

first clue :

we have A = a number which when multiplied by itself gives the same number in the unit digit.

possible numbers = 1 and 6

Second Clue:

number when multiplied with 1 and added with the reminder of previous multiplication( A*A) = 9

both first and second clue implies that A = 6.

Question:4 Find the values of the letters in each of the following and give reasons for the steps involved

Answer:

There can be two cases

1. when the addition of unit place digit doesn't produce Carry

A + 3 = 6

A = 3

However, to get 3 in unit place of our answer our B has to be 6 and that would produce carry hence this case is not possible.

2. when the addition of unit place digit produces Carry

A + 3 +1 = 6

A = 2

for getting 2 in unit place of answer we need the sum of unit digit of numbers = 12

B + 7 = 12

B = 5

Hence A = 2 and B = 5

Question:5 Find the values of the letters in each of the following and give reasons for the steps involved.

Answer:

Here multiplication of 3 and B gives a number whose unit place digit is B .

Possible value of B = 0 and 5

let B = 5

3 * A + 1 = CA

this is not possible for any value of A.

Hence B = 0

now A * 3 = CA ( a number whose unit place digit is A itself when multiplied by 3) hence

possible value of A = 5 and 0

since AB is a two digit number A can not equal to 0.

hence A = 5

A * 3 + 1 = CA

5 * 3 + 1 = 15

hence C = 1

A = 5, B = 5 and C = 1.

Question:6 Find the values of the letters in each of the following and give reasons for the steps involved.

Answer:

Here , multiplication of B and 5 gives a number whose ones digit is B. this is possible when B = 0 or 5

let B = 5

B * 5 = 5 * 5 = 25

Carry = 2

5*A + 2 = CA , This os possible only when A = 2 or 7

when A = 2 ,

5*2 + 2 = 12 which implies C = 1

when A = 7

5*7 + 2 = 37 which implies C = 3

now B = 0

B*5 = 0*5 = 0

Carry = 0 so

5 * A = CA which is possible when A = 0 or 5 Howerver A cannot equal to 0 since AB is a two digit number

so A = 5

5*5 = 25 which implies C = 2

hence possible values of A B and C are

A = 5, 2, 7 , B = 0, 5, 5 and C = 2, 1, 3

Question:7 Find the values of the letters in each of the following and give reasons for the steps involved.

Answer:

The product of 6 & B gives a number whose unit digit is B again.

possible value of B = 0. 2 , 4, 6 or 8

If B = o then our product will be zero. hence this value of B is not possible.

If B = 2, then B x 6 = 12 . Carry for next step = 1.

6A + 1 = BB = 22

implies A = 21/6 = not any integer value hence this case is also not possible.

If B = 6 then B *6 = 36 and 3 will be carry for next step.

6A + 3 = BB = 66

implies A = 63/6 = not an integer value hence this case is also not possible.

If B = 8 then B * 6 = 48 and 4 will be carry for next step.

6A + 4 = BB = 88

implies A = 14 however A is a single digit number hence this case is also not possible.

If B = 4 then B*6 = 24 and 2 will be carry for next step.

6A + 2 = BB = 22

implies A = 7 .

Hence A = 7 and B = 4 is the correct answer.

Question:8 Find the values of the letters in each of the following and give reasons for the steps involved.

Answer:

The addition of 1 and B gives a number whose ones digit is 0. this is possible when digit B = 9 .

1 + B = 10 and 1 is the Carry for the next step

Now, A + 1 + 1 = B => 9

Implies A = 7.

Hence A = 7 and B = 9 is Correct answer

Question:9 Find the values of the letters in each of the following and give reasons for the steps involved.

Answer:

The additiion of B and 1 is 8 is giving a number whose ones digit is 8. this means digit B is 7 .

B + 1 = 8 and no carry for next step.

next step :

Now, A + B = 1 => A + 7

which implies A = 4

A + B = 11 and 1 is carry for next step

1 + 2 + A = B

1 + 2 + 4 = 7

Hence A = 4 and B = 7 is correct answer.

Question:10 Find the values of the letters in each of the following and give reasons for the steps involved.

Answer:

The addition of A and B is giving a number whose ones digit is 9. The sum can only be 9 not 10 as a sum of two single digits cannot exceed 18. hence there will not be any carry for the next step

2 + A = 0

implies A = 8

2 + 8 = 10 and 1 is the carry for next step.

1 + 1 + 6 = A = 8

it satisfies hence A = 8 and B = 1 is the correct answer.

NCERT solutions for class 8 maths chapter 16 playing with numbers topic 16.5.2 divisibility by 5

Question:1 If the division N ÷ 5 leaves a remainder of 3, what might be the ones digit of N? (The one’s digit, when divided by 5, must leave a remainder of 3. So the one’s digit must be either 3 or 8.)

Answer:

The detailed solution for the above-written problem is as follows,

The unit digit, when divided by 5, must be leaving a remainder of 3. So the unit digit must be either 3 or 8.

Question:2 If the division N\div 5 leaves a remainder of 1, what might be the one’s digit of N ?

Answer:

The detailed solution for the above-written question is as follows

If a number is divisible by 5 then it's unit digit must be 0 or 5. so if we need the remainder of 1 when divided by 5 then the numbers unit digit must be 1 or 6.

Question: 3 If the division N\div 5 leaves a remainder of 4, what might be the one’s digit of N?

Answer:

The detailed solution for the above-written question is as follows

If the unit digit of a number is 0 or 5, then it is divisible by 5. hence if we need the remainder of 4 then unit digit of number should be 4 or 9.

NCERT solutions for class 8 maths chapter 16 playing with numbers topic 16.5.3 divisibility by 2

Question: 1 If the division N ÷ 2 leaves a remainder of 1, what might be the one’s digit of N? (N is odd; so its one’s digit is odd. Therefore, the one’s digit must be 1, 3, 5, 7 or 9.)

Answer:

The detailed solution for the above-written question is as follows

N is odd; so it's unit digit is odd. Therefore, the unit digit must be 1, 3, 5, 7 or 9.

Question:2 If the division N \div 2 leaves no remainder (i.e., zero remainders), what might be the one’s digit of N?

Answer:

The detailed solution for the above-written question is as follows

N is Even; so it's unit digit is even. Therefore, the unit digit must be 2, 4, 6, 8 or 0.

Question: 3 Suppose that the division N\div 5 leaves a remainder of 4, and the division N\div 2 leaves a remainder of 1. What must be the one’s digit of N?

Answer:

Since N leaves the remainder of 4 when divided by 5. the possible values in ones place of number N are 4 or 9.

now, since it leaves a remainder of 1 when divided by 2, the N would be an odd number. hence ones digit of N is also an odd number. which means ones digit of our number N is 9.

NCERT solutions for class 8 maths chapter 16 playing with numbers topic 16.5.4 divisibility by 9 and 3

Question:1 Check the divisibility of the following numbers by 9.

108

Answer:

Any number will be divisible by 9 only if the sum of all the digits in that number will be divisible by 9.

Sum of digit of 108 = 1 + 0 + 8 = 9 which is divisible by 9 i.e (9/9 = 1).

hence we conclude 108 is divisible by 9.

Question:2 Check the divisibility of the following numbers by 9.

616

Answer:

Any number will be divisible by 9 only if the sum of all the digits in that number will be divisible by 9.

Sum of digits of 616 = 6 + 1 + 6 = 13 which is not divisible by 9,

Hence we conclude 616 is not divisible by by 9.

Question:3 Check the divisibility of the following numbers by 9.

294

Answer:

Any number will be divisible by 9 only if the sum of all the digits in that number will be divisible by 9.

Sum of digits of 294 = 2 + 9 + 4 = 15 which is not divisible by 9.

Hence we conclude 294 is not divisible by 9.

Question:4 Check the divisibility of the following numbers by 9.

432

Answer:

Any number will be divisible by 9 only if the sum of all the digits in that number will be divisible by 9.

Sum of digit 432 = 4 + 3 + 2 = 9 which is divisible by 9.

Hence we conclude 432 is divisible by 9.

Question:5 Check the divisibility of the following numbers by 9.

927

Answer:

Any number will be divisible by 9 only if the sum of all the digits in that number will be divisible by 9.

Sum of digits of 927 = 9 + 2 + 7 = 18 which is divisible by 18.

Hence we conclude number 927 is divisible by 9.

NCERT solutions for class 8 maths chapter 16 playing with numbers topic think, discuss and write

Question: 1 You have seen that a number 450 is divisible by 10. It is also divisible by 2 and 5 which are factors of 10. Similarly, a number 135 is divisible 9. It is also divisible by 3 which is a factor of 9. Can you say that if a number is divisible by any number m , then it will also be divisible by each of the factors of m ?

Answer:

Yes, it has been prooved that if a number is divisible by any number m , then it will also be divisible by each of the factors of m.

Let's Assume n is divisible by m, and m is divisible by k.This means

n=pm and

m = qk where all are integers

Now,

n = p(qk) =( pq)k which means n is divisible by k.

Hence a number is divisible by any number m , then it will also be divisible by each of the factors of m.

Question:2(i) Write a 3-digit number abc as 100a + 10b + c
\\= 99a + 11b + (a - b + c)\\ = 11(9a + b) + (a - b + c) If the number abc is divisible by 11, then what can you say about
(a - b + c)

Is it necessary that (a - b + c) should be divisible by 11?

Answer:

let the number abc be 132

Here a = 1, b = 3 and c = 2

132= 100*1 + 10*3 + 2 = 99 + 11*3 + (1 - 3 + 2)

= 11(9*1+3) + (1 - 3 + 2 )

if number is divisible by 11 then (a - b + c ) must be divisible by 11.

as in above case of number 132 the a - b + c = 1 -3 + 2 = 0 whichis divisible by 11.

Hence we conclude ( a - b + c ) should be divisible by 11 if abc is divisible by 11.

Question:2(ii) Write a 4-digit number abcd as 1000a + 100b + 10c + d
\\= (1001a + 99b + 11c) - (a - b + c - d)\\ = 11(91a + 9b + c) + [(b + d) - (a + c)]
If the number abcd is divisible by 11, then what can you say about [(b + d) - (a + c)] ?

Answer:

If the number abcd is divisible by 11 then [ (b + d) - (a + c) ] also must be divisible by 11.

let the number be 1089

here a = 1, b = 0, c = 8 and d = 9

1089 = 1000*1 + 100*0 + 10*8 + 9

= (1001*1 + 99*0 + 11*8) + [(0 + 9) - (1 + 8)]

= 11(91*1 + 9*0 + 8) + [ 9 - 9 ]

here [ (b + d) - (a + c) ] = [9 - 9 ] = 0 which is divisible by 11.

hence If the number abcd is divisible by 11 then [ (b + d) - (a + c) ] also must be divisible by 11.

Question:2(iii) From (i) and (ii) above, can you say that a number will be divisible by 11 if the difference between the sum of digits at its odd places and that of digits at the even places is divisible by 11?

Answer:

Yes,

A number will always be divisible by 11 if the difference between the sum of digits at its odd places and that of digits at the even places is divisible by 11.

So, for instance, 2728 has the alternating sum of digits 2-7+2-8 = -11. Here -11 is divisible by 11, so is 2728.

Similarly, for 31415, the alternating sum of digits is 3-1+4-1+5 = 10. This would not divisible by 11, so neither is 31415.

NCERT solutions for class 8 maths chapter 16 playing with numbers topic 16.5.4 divisibility by 9 and 3

Question:1 Check the divisibility of the following numbers by 3.

108

Answer:

Any number will be divisible by 3 only if the sum of all the digits in that number will be divisible by 3.

Sum of digits of number 108 = 1 + 0 +8 = 9 which is divisible by 3.

Hence we conclude number 108 is divisible by 3.

Question:2 Check the divisibility of the following numbers by 3.

616

Answer:

Any number will be divisible by 3 only if the sum of all the digits in that number will be divisible by 3.

Sum of digits of number 616 = 6 + 1 + 6 = 13 which is not divisible by 3.

Hence we conclude number 616 is not divisible by 3.

Question:3 Check the divisibility of the following numbers by 3.

294

Answer:

Any number will be divisible by 3 only if the sum of all the digits in that number will be divisible by 3.

Sum of digits of number 294= 2 + 9 + 4 = 15 which is divisible by 3.

Hence we conclude number 294 is divisible by 3.

Question:4 Check the divisibility of the following numbers by 3.

432

Answer:

Any number will be divisible by 3 only if the sum of all the digits in that number will be divisible by 3.

Sum of digits of number 432 = 4 + 3 + 2 = 9 which is divisible by 3.

Hence we conclude number 432 is divisible by 3.

Question:5 Check the divisibility of the following numbers by 3.

927

Answer:

Any number will be divisible by 3 only if the sum of all the digits in that number will be divisible by 3.

Sum of digits of number 927 = 9 + 2 + 7 = 18 which is divisible by 3.

Hence we conclude number 108 is divisible by 3.

NCERT solutions for class 8 maths chapter 16 playing with numbers-Excercise: 16.2

Question:1 If 21y5 is a multiple of 9, where y is a digit, what is the value of y ?

Answer:

If a number is a multiple of 9 , then the sum of its digit will be divisible by 9.

Sum of digits of 21y5= 2 + 1 + y + 5 = 8 + y

8 + y is a multiple of 9 when y = 1 (since y can only be single digit )

hence y = 1 is correct answer.

Question: 2. If 31z5 is a multiple of 9, where z is a digit, what is the value of z ? You will find that there are two answers for the last problem. Why is this so?

Answer:

If a number is a multiple of 9, then the sum of its digit will be divisible by 9 .

Sum of digits of 31z5 = 3 + 1 + z + 5 = 9 + z

hence 9 + z have to be multiple of 9

this possible when 9 + z = 0, 9 , 18, 27 ...

since z is a single digit number this sum can only be 9 or 18 . therefore, z should be 0 or 9 .

hence two possible values of z = 0 or 9.

Question:3 If 24x is a multiple of 3, where x is a digit, what is the value of x ?

(Since 24x is a multiple of 3, its sum of digits 6 + x is a multiple of 3; so 6 + x is one of these numbers: 0, 3, 6, 9, 12, 15, 18, ... . But since x is a digit, it can only be that 6 + x = 6 \;or\; 9 \;or \;12 \;or\; 15 . Therefore, x = 0 \;or\; 3 \;or \;6 \;or\;9 . Thus, x can have any of four different values.)

Answer:

if a number is multiple of 3 then the sum of its digits is also a multiple of 3.

Summ of digits of 24x = 2 + 4 + x = 6 + x

6 + x is a multiple of 3 which means

6 + x = 0 or 3 or 9 or 12....

but since x is a single digit the possible sum is 6 or 9 or 12 or 15 and hence value of x are 0 or 3 or 6 or 9 respectively.

hence possible value of x = 0, 3, 6, or 9.

Question:4 If 31z5 is a multiple of 3, where z is a digit, what might be the values of z ?

Answer:

If a number is multiple of 3, the sum of its digits will be multiple of 3.

Sum of digits of 31z5 = 3 + 1 + z + 5 = 9 + z

9 + z is a multiple of 3 and since z is a single digit

9 + z is any one of 9, 12, 15 or 18

thus value of z is 0, 3, 6 or 9 respectively.

Hence the possible value of z is 0,3,6 or 9.

NCERT Class 8 Mathematics Solutions

Chapter 01 - Rational Numbers

Chapter 02 - Linear Equations in One Variable

Chapter 03 -Understanding Quadrilaterals

Chapter 04 - Practical Geometry

Chapter 05 - Data Handling

Chapter 06 - Squares and Square Roots

Chapter 07 - Cubes and Cube Roots

Chapter 08 - Comparing Quantities

Chapter 09 - Algebraic Expressions and Identities

Chapter 10 - Visualising Solid Shapes

Chapter 11 - Mensuration

Chapter 12 - Exponents and Powers

Chapter 13 - Direct and Indirect proportions

Chapter 14 - Factorisation

Chapter 15 - Introduction to Graphs

Chapter 16 - Playing with Numbers

Want to know more

Please fill in the details below:

INNER POST ADS

Latest IITJEE Articles$type=three$c=3$author=hide$comment=hide$rm=hide$date=hide$snippet=hide

Latest NEET Articles$type=three$c=3$author=hide$comment=hide$rm=hide$date=hide$snippet=hide

Name

Admissions,1,Alternating Current,60,AP EAMCET 2020,1,Basic Maths,2,BCECE 2020,1,best books for iit jee,2,best coaching institute for iit,1,best coaching institute for iit jee preparation,1,best iit jee coaching delhi,1,best iit jee coaching in delhi,2,best study material for iit jee,4,BITSAT Registration 2020,1,Blog,62,books for jee preparation,1,books recommended by iit toppers,3,Capacitance,3,CBSE,1,CBSE accounts exam,1,CBSE boards,1,CBSE NEET,9,cbse neet 2019,3,CBSE NEET 2020,1,cbse neet nic,1,Centre of Mass,2,Chemistry,58,Class 12 Physics,15,coaching for jee advanced,1,coaching institute for iit jee,2,Collision,2,COMEDK UGET 2020 Application Form,1,COMEDK UGET 2020 Exam Form,1,COMEDK UGET news,1,CUCET 2020,2,Current Electricity,4,CVR college,1,Digestion and Absorption Notes PDF,1,Electromagnetic Induction,3,Electronics,1,Electrostatics,3,Energy,1,Engineering & Medical,1,Fluid Mechanics,4,Gravitation,2,GUJCET 2020 Application Form,1,Heat,4,iit admission,1,iit advanced,1,iit coaching centre,3,iit coaching centre in delhi,2,iit coaching classes,2,iit coaching in delhi,1,iit coaching institute in delhi,1,iit entrance exam,1,iit entrance exam syllabus,2,iit exam pattern,2,iit jee,5,iit jee 2019,3,iit jee advanced,2,iit jee books,3,iit jee coaching,2,iit jee exam,3,iit jee exam 2019,1,iit jee exam pattern,3,iit jee institute,1,iit jee main 2019,2,iit jee mains,3,iit jee mains syllabus,2,iit jee material,1,iit jee online test,3,iit jee practice test,3,iit jee preparation,6,iit jee preparation in delhi,2,iit jee preparation time,1,iit jee preparation tips by toppers,2,iit jee question paper,1,iit jee study material,3,iit jee study materials,2,iit jee syllabus,2,iit jee syllabus 2019,2,iit jee test,3,iit preparation,2,iit preparation books,5,iit preparation time table,2,iit preparation tips,2,iit syllabus,2,iit test series,3,IITJEE,100,Important Biology Notes for NEET Preparation,1,IPU CET,1,JEE Advanced,83,jee advanced exam,2,jee advanced exam pattern,1,jee advanced paper,1,JEE Books,1,JEE Coaching Delhi,3,jee exam,3,jee exam 2019,6,JEE Exam Pattern,2,jee exam pattern 2019,1,jee exam preparation,1,JEE Main,85,jee main 2019,4,JEE Main 2020,1,JEE Main 2020 Application Form,2,JEE Main 2020 news,2,JEE Main 2020 Official Answer Key,1,JEE Main 2020 Registration,1,JEE Main 2020 Score,1,JEE Main application form,1,jee main coaching,1,JEE Main eligibility criteria,3,jee main exam,1,jee main exam 2019,3,jee main online question paper,1,jee main online test,3,JEE Main Paper-2 Result,1,jee main registration,2,jee main syllabus,2,JEE mains 2020,1,jee mains question bank,1,jee mains test papers,3,JEE Mock Test,2,jee notes,1,jee past papers,1,JEE Preparation,2,jee preparation in delhi,1,jee preparation material,4,JEE Study Material,1,jee syllabus,6,JEE Syllabus Chemistry,1,JEE Syllabus Maths,1,JEE Syllabus Physics,1,jee test series,3,KCET - 2020,1,Kinematics,1,Latest article,5,Latest Articles,61,Latest News,34,latest news about neet exam,1,Laws of Motion,2,Magnetic Effect of Current,3,Magnetism,3,MHT CET 2020,2,MHT CET 2020 exam schedule,1,Modern Physics,1,NCERT Solutions,15,neet,3,neet 2019,1,neet 2019 eligibility criteria,1,neet 2019 exam date,2,neet 2019 test series,2,NEET 2020,2,NEET 2020 Application Form,1,NEET 2020 Eligibility Criteria,1,NEET 2020 Registration,1,neet application form,1,neet application form 2019 last date,1,Neet Biology Syllabus,1,Neet Books,3,neet eligibility criteria,3,neet exam 2019,7,neet exam application,1,neet exam date,1,neet exam details,1,neet exam pattern,6,neet exam pattern 2019,2,neet examination,1,neet mock test 2019,1,Neet Notes,3,Neet Online Application Form,3,neet online test,2,neet past papers,1,neet physics syllabus,1,neet practice test,2,NEET preparation books,1,neet qualification marks,1,NEET question paper 2019,1,neet question papers,1,neet registration,1,Neet Study Material,3,neet syllabus,6,neet syllabus 2019,5,NEET Syllabus 2020,1,neet syllabus chemistry,1,neet syllabus for biology,1,neet syllabus for physics,1,neet test series,1,neet ug 2019,2,news,5,online study material for iit jee,1,Optical Instruments,1,Physics,110,physics books for iit jee,1,Power,1,Practical Physics,1,Quiz,5,Ray Optics,1,Rotational Motion,3,SHM,3,Simple Harmonic Motion,3,study materials for iit jee,1,Study Notes,110,study notes for iit jee,1,Thermodynamics,4,TS EAMCET Notification,2,Units and Dimensions,1,UPSEE 2020,1,UPSEE 2020 Application Form,2,UPSEE EXAM,1,Vectors,2,VITEE Application form,1,Wave Motion,3,Wave Optics,1,WBJEE 2020 Admit Card,1,WBJEE 2020 Answer Key,1,Work,1,
ltr
static_page
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET & IIT JEE COACHING: ncert-solutions-class-8-maths-ch-16-Playing-with-Numbers
ncert-solutions-class-8-maths-ch-16-Playing-with-Numbers
BEST NEET COACHING CENTER | BEST IIT JEE COACHING INSTITUTE | BEST NEET & IIT JEE COACHING
https://www.cleariitmedical.com/p/ncert-solutions-class-8-maths-ch-16.html
https://www.cleariitmedical.com/
https://www.cleariitmedical.com/
https://www.cleariitmedical.com/p/ncert-solutions-class-8-maths-ch-16.html
true
7783647550433378923
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy

STAY CONNECTED